Advertisement

Abstract

The avian respiratory system is unique among vertebrates in its structure and in the manner by which it accomplishes its main function, that of providing oxygen (O2) to and removing carbon dioxide (CO2) from the blood. The model of the oxygen delivery system in Figure 8-1 shows the importance of this system in allowing normal cellular metabolism. This model illustrates that ventilation of the lung, along with gas exchange in the pulmonary capillaries, is coupled to the cardiovascular function of transporting oxygen to the body cells where it moves across capillary walls. The mitochondria are the ultimate O2 sinks and provide most of the high-energy phosphate compounds required for cellular function. For CO2, the route is from mitochondria to lung gas and atmosphere.

Keywords

Respiratory Muscle Carotid Body Ventilatory Response Domestic Fowl Mixed Venous Blood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M.A., and A.S. King. (1975). The functional anatomy of the pulmonary circulation of the domestic fowl. Respir. Physiol., 23, 267.PubMedGoogle Scholar
  2. Abdalla, M.A., J.N. Maina, A.S. King, D.Z. King, and J. Henry. (1982). Morphometries of the avian lung. 1. The domestic fowl (Gallus gallus variant domesticus). Respir. Physiol., 47, 267.PubMedGoogle Scholar
  3. Abdel-Magied, E.M., and A.S. King. (1978). The topographical anatomy and blood supply of the carotid body region of the domestic fowl. J. Anat., 126, 535.PubMedGoogle Scholar
  4. Abdel-Magied, E.M., and A.S. King. (1982). Effects of distal vagal ganglionectomy and midcervical vagotomy on the ultrastructure of axonal elements in the carotid body of the domestic fowl. J. Anat., 134, 643.PubMedGoogle Scholar
  5. Arad, Z., and J. Marder. (1983). Acid-base regulation during thermal panting in the fowl (Gallus domesticus): Comparison between breeds. Comp. Biochem. Physiol., 74A, 125.Google Scholar
  6. Baldwin, J.K. (1973). Mechanics of respiration in euthermic and hyperthermic Gallus domesticus. Ph.D. Thesis, University of California, Davis.Google Scholar
  7. Ballam, G.O., T.L. Clanton, and A.L. Kunz. (1982). Ventilatory phase duration in the chicken: role of mechanical and CO2 feedback. J. Appl. Physiol., 53, 1378.PubMedGoogle Scholar
  8. Bamford, O.S., and D.R. Jones. (1974). On the initiation of apnoea and some cardiovascular responses to submer-gence in ducks. Respir. Physiol., 22, 199.PubMedGoogle Scholar
  9. Banzett, R.B., and R.E. Burger. (1977). Response of avian intrapulmonary chemoreceptors to venous CO2 and ventilatory gas flow. Respir. Physiol., 29, 63.PubMedGoogle Scholar
  10. Barker, M.R., R.E. Burger, and P.C.G. Nye. (1981). Respiratory inhibition from chicken intrapulmonary chemoreceptors reduced by increasing rate of repetitive PCO2 changes. Q.J. Exp. Physiol., 66, 367.PubMedGoogle Scholar
  11. Barnas, G.M., and R.E. Burger. (1983). Interaction of temperature with extra- and intrapulmonary chemoreceptor control of ventilatory movements in the awake chicken. Respir. Physiol., 54, 223.PubMedGoogle Scholar
  12. Barnas, G.M., F.B. Mather, and M.R. Fedde. (1978a). Response of avian intrapulmonary smooth muscle to changes in carbon dioxide concentration. Poult. Sci., 57, 1400.PubMedGoogle Scholar
  13. Barnas, G.M., F.B. Mather, and M.R. Fedde. (1978b). Are avian intrapulmonary CO2 receptors chemically modulated mechanoreceptors or chemoreceptors? Respir. Physiol., 35, 237.PubMedGoogle Scholar
  14. Barnas, G.M., J.A. Estavillo, F.B. Mather, and R.E. Burger. (1981). The effect of CO2 and temperature on respiratory movements in the chicken. Respir. Physiol., 43, 315.PubMedGoogle Scholar
  15. Barnas, G.M., S.C. Hempleman, and R.E. Burger. (1983). Effect of temperature on the CO2 sensitivity of avian intrapulmonary chemoreceptors. Respir. Physiol., 54, 233.PubMedGoogle Scholar
  16. Barnas, G., K. Muckenhoff, and P. Scheid. (1984). Intrapulmonary chemoreceptors in the pigeon Columba livia. Pfleugers Arch., 400 (Suppl.), R58.Google Scholar
  17. Bartels, H., C. Christoforides, J. Hedley-Whyte, and L. Laasberg. (1971). Solubility coefficients of gases. In “Biological Handbooks: Respiration and Circulation” (P.L. Altman and D.S. Dittman, Eds.). Bethesda: Federation of American Societies for Experimental Biology, p. 18.Google Scholar
  18. Baumann, R., and F.H. Baumann. (1978). Respiratory function of embryonic chicken hemoglobin. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 292.Google Scholar
  19. Baumann, R., S. Padeken, E.-A. Haller, and T. Brilmayer. (1983). Effects of hypoxia on oxygen affinity, hemoglobin pattern, and blood volume of early chicken embryos. Am. J. Physiol., 244, R733.PubMedGoogle Scholar
  20. Bech, C, and K. Johansen. (1980). Ventilation and gas exchange in the mute swan (Cygnus olor). Respir. Physiol., 39, 285.PubMedGoogle Scholar
  21. Berger, P.J., and R.D. Tallman, Jr. (1982). Lengthening of inspiration by intrapulmonary chemoreceptor discharge in ducks. J. Appl. Physiol., 53, 1392.PubMedGoogle Scholar
  22. Berger, P.J., R.D. Tallman, Jr., and A.L. Kunz. (1980). Discharge of intrapulmonary chemoreceptors and its modulation by rapid Fico changes in decerebrate ducks. Respir. Physiol. 42, 123. 2Google Scholar
  23. Bernstein, M.H., and F.C. Samaniego. (1981). Ventilation and acid-base status during thermal panting in pigeons (Columba livia). Physiol. Zool., 54, 308.Google Scholar
  24. Black, C.P., and S.M. Tenney. (1980). Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol., 39, 217.PubMedGoogle Scholar
  25. Boggs, D.F., and G.F. Birchard. (1983). Relationship between haemoglobin O2 affinity and the ventilatory response to hypoxia in the rhea and pheasant. J. Exp. Biol., 1O2, 347.Google Scholar
  26. Boggs, D.F., and D.L. Kilgore, Jr. (1983). Ventilatory responses of the burrowing owl and bobwhite to hypercarbia and hypoxia. J. Comp. Physiol., 149, 527.Google Scholar
  27. Boggs, D.F., D.L. Kilgore, Jr., and G.F. Birchard. (1984). Respiratory physiology of burrowing mammals and birds. Comp. Biochem. Physiol. 77A, 1.Google Scholar
  28. Boon, J.K., W.D. Kuhlmann, and M.R. Fedde. (1980). Control of respiration in the chicken: Effects of venous CO2 loading. Respir. Physiol., 39, 169.PubMedGoogle Scholar
  29. Boon, J.K., M.R. Fedde, and P. Scheid. (1982). A method for localizing intrapulmonary chemoreceptors in the para- bronchial mantle of the duck. Comp. Biochem. Physiol. 72A, 463.Google Scholar
  30. Bouverot, P. (1978a). Control of breathing in birds compared with mammals. Physiol. Rev., 58, 604.PubMedGoogle Scholar
  31. Bouverot, P. (1978b). Role of arterial chemoreceptors in ventilatory acclimation to high altitude in unanesthetized Pekin ducks. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 84.Google Scholar
  32. Bouverot, P. (1981). Hypoxia tolerance and ventilatory O2- chemoreflexes. In Advances in Physiological Sciences, Vol. 10, Respiration (I. Hutàs and L.A. Debreczeni, Eds.). Elmsford, New York: Pergamon Press, p. 145.Google Scholar
  33. Bouverot, P., and L.-M. Leitner. (1972). Arterial chemoreceptors in the domestic fowl. Respir. Physiol., 15, 310.PubMedGoogle Scholar
  34. Bouverot, P., and P. Sébert. (1979). O2-chemoreflex drive of ventilation in awake birds at rest. Respir. Physiol., 37, 201.PubMedGoogle Scholar
  35. Bouverot, P., N. Hill, and Y. Jammes. (1974). Ventilatory responses to CO2 in intact and chronically chemodenervated Pekin ducks. Respir. Physiol., 22, 1237.Google Scholar
  36. Bouverot, P., G. Hildwein, and P. Oulhen. (1976). Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir. Physiol., 28, 371.PubMedGoogle Scholar
  37. Bouverot, P., D. Douguet, and P. Sébert. (1979). Role of the arterial chemoreceptors in ventilatory and circulatory adjustments to hypoxia in awake Pekin ducks. J. Comp. Physiol., 133, 177.Google Scholar
  38. Brackenbury, J.H. (1971a). Pressure-flow phenomena within the avian respiratory system. J. Anat., 108, 609.Google Scholar
  39. Brackenbury, J.H. (1971b). Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir., Physiol., 13, 319.Google Scholar
  40. Brackenbury, J.H. (1972a). Physical determinants of air flow pattern within the avian lung. Respir. Physiol., 15, 384.PubMedGoogle Scholar
  41. Brackenbury, J.H. (1972b). Lung-air-sac anatomy and respiratory pressures in the bird. J. Exp. Biol., 57, 543.PubMedGoogle Scholar
  42. Brackenbury, J.H. (1973). Respiratory mechanics in the bird. Comp. Biochem. Physiol. 44A, 599.Google Scholar
  43. Brackenbury, J.H. (1978). Experimentally induced antagonism of chemical and thermal reflexes in the respiratory system of fully conscious chickens. Respir. Physiol., 34, 377.PubMedGoogle Scholar
  44. Brackenbury, J. (1979). Corrections to the Hazelhoff model of airflow in the avian lung. Respir. Physiol., 36, 143.PubMedGoogle Scholar
  45. Brackenbury, J.H. (1980). Respiration and production of sounds by birds. Biol. Rev., 55, 363.Google Scholar
  46. Brackenbury, J.H. (1981). Airflow and respired gases within the lung-air-sac system of birds. Comp. Biochem. Physiol. 68A, 1.Google Scholar
  47. Brackenbury, J.H., and A.R. Akester. (1978). A model of the capillary zone of the avian tertiary bronchus. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 125.Google Scholar
  48. Brackenbury, J.H., and M. Gleeson (1983). Effects of PCO2 on respiratory pattern during thermal and exercise hyperventilation in domestic fowl. Respir. Physiol., 54, 109.PubMedGoogle Scholar
  49. Brackenbury, J.H., P. Avery, and M. Gleeson. (1981). Respi-ration in exercising fowl. I. Oxygen consumption, respiratory rate and respired gases. J. Exp. Biol., 93, 317.PubMedGoogle Scholar
  50. Brackenbury, J.H., P. Avery, and M. Gleeson. (1982). Effects of temperature on the ventilatory response to inspired CO2 in unanesthetized domestic fowl. Respir. Physiol., 49, 235.PubMedGoogle Scholar
  51. Bretz, W.L., and K. Schmidt-Nielsen. (1971). Bird respiration: Flow patterns in the duck lung. J. Exp. Biol., 54, 103.PubMedGoogle Scholar
  52. Burger, R.E. (1980). Respiratory gas exchange and control in the chicken. Poult. Sci., 59, 2654.PubMedGoogle Scholar
  53. Burger, R.E., J.L. Osborne, and R.B. Banzett. (1974). Intrapulmonary chemoreceptors in Gallus domesticus: Adequate stimulus and functional localization. Respir. Physiol., 22, 87.PubMedGoogle Scholar
  54. Burger, R.E., P.C.G. Nye, F.L. Powell, C. Ehlers, M. Barker, and M.R. Fedde. (1976a). Response to CO2 of intrapulmonary chemoreceptors in the emu. Respir. Physiol., 28, 315.PubMedGoogle Scholar
  55. Burger, R.E., J.C.G. Coleridge, H.M. Coleridge, P.C.G. Nye, F.L. Powell, C. Ehlers, and R.B. Banzett. (1976b). Chemoreceptors in the paleopulmonic lung of the emu: Discharge patterns during cyclic ventilation. Respir. Physiol., 28, 249.PubMedGoogle Scholar
  56. Burger R.E., M. Meyer, W. Graf, and P. Scheid. (1979). Gas exchange in the parabronchial lung of birds: Experiments in unidirectionally ventilated ducks. Respir. Physiol., 36, 19.PubMedGoogle Scholar
  57. Burns, B., A.E. James, G. Hutchins, G. Novak, and R.R. Price. (1978). Ventilatory 133-Xenon distribution studies in the duck (Anas platyrhynchos). In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 129.Google Scholar
  58. Burton, R.R., and A.H. Smith. (1968). Blood and air volumes in the avian lung. Poult. Sci., 47, 85.PubMedGoogle Scholar
  59. Butler, P.J., and M.P. Osborne. (1975). The effect of cervical vagotomy (decentralization) on the ultrastructure of the carotid body of the duck, Anas platyrhynchos. Cell Tissue Res., 163, 491.PubMedGoogle Scholar
  60. Butler, P.J., and E.W. Taylor. (1983). Factors affecting the respiratory and cardiovascular responses to hypercapnic hypoxia, in mallard ducks. Respir. Physiol., 53, 109.PubMedGoogle Scholar
  61. Calder, W.A. (1968). Respiratory and heart rates of birds at rest. Condor, 70, 358.Google Scholar
  62. Calder, W.A., and K. Schmidt-Nielsen. (1968). Panting and blood carbon dioxide in birds. Am. J. Physiol., 215, 477.PubMedGoogle Scholar
  63. Callanan, D., M. Dixon, J.G. Widdicombe, and J.C.M. Wise. (1974). Responses of geese to inhalation of irritant gases and injections of phenyl diguanide. Respir. Physiol., 22, 157.PubMedGoogle Scholar
  64. Chiang, M.J., P.J. Berger, and A.L. Kunz. (1978). A study of the effect of SO2 on pacing and intrapulmonary chemoreceptor discharge in the domestic fowl. Respir. Physiol., 33, 229.PubMedGoogle Scholar
  65. Clanton, T.L., G.O. Ballam, R.K. Moore, and A.L. Kunz. (1982). Rapid ventilatory responses to changes in insufflated CO2 in awake roosters. J. Appl. Physiol., 53, 1371.PubMedGoogle Scholar
  66. Cohn, J.E., and R. Shannon. (1968). Respiration in unanesthetized geese. Respir. Physiol., 5, 259.Google Scholar
  67. Crank, W.D., and R.R. Gallagher. (1978). Theory of gas exchange in the avian parabronchus. Respir. Physiol., 35, 9.PubMedGoogle Scholar
  68. Crank, W.D., W.D. Kuhlmann, and M.R. Fedde. (1980). Functional localization of avian intrapulmonary CO2 receptors within the parabronchial mantle. Respir. Physiol., 41, 71.PubMedGoogle Scholar
  69. Crawford, E.C., Jr., and G. Kampe. (1971). Resonant panting in pigeons. Comp. Biochem. Physiol. 40A, 549.Google Scholar
  70. Dejours, P. (1981). “Principles of Comparative Respiratory Physiology,” 2nd ed. Amsterdam: Elsevier/North-Holland Biomedical Press, p. 185.Google Scholar
  71. deWet, P.D., M.R. Fedde, and R.L. Kitchell. (1967). Innervation of the respiratory muscles of Gallus domesticus. J. Morphol., 123, 17.PubMedGoogle Scholar
  72. Dreyer, M.V., H.P.A. DeBoom, P.D. deWet, J.M.W. LeRoux, D.J. Coetzer, and F. Eloff. (1977). Excision and localization of the avian (Gallus domesticus) carotid body. Acta Anat., 99, 192.PubMedGoogle Scholar
  73. Dreyer, M.V., H.P.A. DeBoom, P.D. deWet, N. Hugo, and F. Eloff. (1978). Histocytology of the avian (Gallus domesticus) carotid body. Acta Anat., 1O2, 217.PubMedGoogle Scholar
  74. Dubach, M. (1981). Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird. Respir. Physiol., 46, 43.PubMedGoogle Scholar
  75. Dubbeldam, J.L., E.R. Brus, S.B.J. Menken, and S. Zeilstra. (1979). The central projections of the glossopharyngeal and vagus ganglia in the mallard, Anas platyrhynchos L. J. Comp. Neurol., 183, 149.Google Scholar
  76. Duke, G.E., W.D. Kuhlmann, and M.R. Fedde. (1977). Evidence of mechanoreceptors in the muscular stomach of the chicken. Poult. Sci., 56, 297.PubMedGoogle Scholar
  77. Duncker, H.-R. (1971). The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb. Anat. Entwicklungsgesch., 45 (6), 1.Google Scholar
  78. Duncker, H.-R. (1972). Structure of avian lungs. Respir. Physiol., 14, 44.PubMedGoogle Scholar
  79. Duncker, H.-R. (1974). Structure of the avian respiratory tract. Respir. Physiol., 22, 1.PubMedGoogle Scholar
  80. Duncker, H.-R. (1978a). General morphological principles of amniotic lungs. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 2.Google Scholar
  81. Duncker, H.-R. (1978b). Funktionsmorphologie des Atemapparates und Coelomgliederung bei Reptilien, Vögeln und Säugern. Verh. Dtsch. Zool. Ges., 71, 99.Google Scholar
  82. Duncker, H.-R. (1978c). Development of the avian respiratory and circulatory systems. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 260.Google Scholar
  83. Duncker, H.-R. (1981). Stammesgeschichte der Struktur- und Funktionsprinzipien der Wirbeltierlungen. Verh. Anat. Ges., 75, 279.PubMedGoogle Scholar
  84. Eaton, J.A., Jr., and M.R. Fedde. (1978). Biogenic amine- containing cells in the chicken lung. Poult. Sci., 57, 793.PubMedGoogle Scholar
  85. Eaton, J.A., Jr., M.R. Fedde, and R.E. Burger. (1971). Sensitivity to inflation of the respiratory system in the chicken. Respir. Physiol., 11, 167.PubMedGoogle Scholar
  86. Faraci, F.M., D.L. Kilgorejr., and M.R. Fedde. (1984). Oxygen delivery to the heart and brain during hypoxia: Pekin duck vs. Bar-headed goose. Am. J. Physiol., 247, R69.Google Scholar
  87. Fedde, M.R. (1970). Peripheral control of avian respiration. Fed. Proc. Fed. Am. Soc. Exp. Biol., 29, 1664.Google Scholar
  88. Fedde, M.R. (1976). Respiration. In “Avian Physiology,” 3rd ed. (P.D. Sturkie, Ed.). New York: Springer-Verlag, p. 122.Google Scholar
  89. Fedde, M.R. (1980). Structure and gas-flow pattern in the avian respiratory system. Poult. Sci., 59, 2642.PubMedGoogle Scholar
  90. Fedde, M.R. (1981). Intrapulmonary CO2 receptors and their role in the control of avian respiration. In “Advances in Physiological Sciences, Vol. 10. Respiration” (I. Hutäs and L.A. Debreczeni, Eds.). Elmsford, New York: Pergamon Press, p. 147.Google Scholar
  91. Fedde, M.R., and D.F. Peterson. (1970). Intrapulmonary receptor response to changes in airway-gas composition in Gallus domesticus. J. Physiol. (London), 209, 609.Google Scholar
  92. Fedde, M.R., and W.D. Kuhlmann. (1975). PO2 changes during analysis of chicken arterial blood. Comp. Biochem. Physiol. 50A, 633.Google Scholar
  93. Fedde, M.R., and W.D. Kuhlmann. (1978). Intrapulmonary carbon dioxide sensitive receptors: Amphibians to mammals. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 33.Google Scholar
  94. Fedde, M.R., and P. Scheid. (1976). Intrapulmonary CO2 receptors in the duck: IV. Discharge pattern of the population during a respiratory cycle. Respir. Physiol., 26, 223.PubMedGoogle Scholar
  95. Fedde, M.R., and G.H. Cardinet, III. (1977). Histochemical studies of respiratory muscles of chicken. Am. J. Vet. Res., 38, 585.PubMedGoogle Scholar
  96. Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1963). The effect of anesthesia and age on respiration following bilateral, cervical vagotomy in the fowl. Poult. Sci., 42, 1212.Google Scholar
  97. Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1964a). Electromyographic studies of the effects of bodily position and anesthesia on the activity of the respiratory muscles of the domestic cock. Poult. Sci., 43, 839.Google Scholar
  98. Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1964b). Elec-tromyographic studies of the effects of bilateral, cervical vagotomy on the action of the respiratory muscles of the domestic cock. Poult. Sci., 43, 1119.Google Scholar
  99. Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1964c). Anatomic and electromyographic studies of the costopulmonary muscles in the cock. Poult. Sci., 43, 1177.Google Scholar
  100. Fedde, M.R., P.D. deWet, and R.L. Kitchell. (1969). Motor unit recruitment pattern and tonic activity in respiratory muscles of Gallus domesticus. J. Neurophysiol., 32, 995.PubMedGoogle Scholar
  101. Fedde, M.R., R.N. Gatz, H. Slama, and P. Scheid. (1974a). Intrapulmonary CO2 receptors in the duck: I. Stimulus specificity. Respir. Physiol., 22, 99.PubMedGoogle Scholar
  102. Fedde, M.R., R.N. Gatz, H. Slama, and P. Scheid. (1974b). Intrapulmonary CO2 receptors in the duck: II. Comparison with mechanoreceptors. Respir. Physiol., 22, 115.PubMedGoogle Scholar
  103. Fedde, M.R., J.P. Kiley, and W.D. Kuhlmann. (1980). Are avian intrapulmonary chemoreceptors involved in the control of breathing? In “Acta XVII Congressus Internationalis Ornithologici” (R. Nohring, Ed.). Berlin: Deutsche Ornithologen-Gesellschaft, p. 360.Google Scholar
  104. Fedde, M.R., R.E. Burger, J. Geiser, R.K. Gratz, J.A. Estavillo, and P. Scheid. (1981). Effects of dead space on caudal air sac gas composition in the goose. Physiologist, 24, 131.Google Scholar
  105. Fedde, M.R., J.P. Kiley, F.L. Powell, and P. Scheid. (1982). Intrapulmonary CO2 receptors and control of breathing in ducks: Effects of prolonged circulation time to carotid bodies and brain. Respir. Physiol., 47, 121.PubMedGoogle Scholar
  106. Fowle, A.S.E., and S. Weinstein. (1966). Effect of cutaneous electric shock on ventilatory response of birds to carbon dioxide. Am. J. Physiol., 210, 293.PubMedGoogle Scholar
  107. Fujii, S., T. Tamura, and T. Okamoto. (1981). Microarchitecture of air capillaries and blood capillaries in the respiratory area of the hen’s lung examined by scanning electron microscopy. Jpn. J. Vet. Sci., 43, 83.Google Scholar
  108. Gillespie, J.R., J.P. Gendner, J.C. Sagot, and P. Bouverot. (1982a). Impedance of the lower respiratory system in ducks measured by forced oscillations during normal breathing. Respir. Physiol., 47, 51.PubMedGoogle Scholar
  109. Gillespie, J.R., J.P. Gendner, J.C. Sagot, and P. Bouverot. (1982b). Respiratory mechanics of Pekin ducks under four conditions: Pressure breathing, anesthesia, paralysis or breathing CO2-enriched gas. Respir. Physiol., 47, 177.PubMedGoogle Scholar
  110. Gleeson, M., and J.H. Brackenbury. (1983). Respiratory and blood gas responses in exercising birds. Comp. Biochem. Physiol. 76A, 211.Google Scholar
  111. Gleeson, M., and J.H. Brackenbury. (1984). Effects of body temperature on ventilation, blood gases and acid-base balance in exercising fowl. Q. J. Exp. Physiol., 69, 61.PubMedGoogle Scholar
  112. Grima, M., and H. Girard. (1981). Oxygen consumption by chick blood cells during embryonic and post-hatch growth. Comp. Biochem. Physiol. 69A, 437.Google Scholar
  113. Groth, H.-P. (1972). Licht- und fluoreszenzmikroskopische Untersuchungen zur Innervation des Luftsacksystems der Vogel. Z. Zellforsch. Mikrosk. Anat., 127, 87.PubMedGoogle Scholar
  114. Hart, J.S., and O.Z. Roy. (1966). Respiratory and cardiac responses to flight in pigeons. Physiol. Zool., 39, 291.Google Scholar
  115. Hinds, D.S., and W.A. Calder. (1971). Tracheal dead space in the respiration of birds. Evolution, 25, 429.Google Scholar
  116. Hodges, R.D., A.S. King, D.Z. King, and E.I. French. (1975). The general ultrastructure of the carotid body of the domestic fowl. Cell Tissue Res., 162, 483.PubMedGoogle Scholar
  117. Isaacks, R.E., and D.R. Harkness. (1980). Erythrocyte organic phosphates and hemoglobin function in birds, reptiles, and fishes. Am. Zool., 20, 115Google Scholar
  118. Isaacks, R.E., D.R. Harkness, J.L. Adler, and P.H. Goldman. (1976). Studies on avian erythrocyte metabolism. Effect of organic phosphates on oxygen affinity of embryonic and adult-type hemoglobins of the chick embryo. Arch. Biochem. Biophys., 173, 114.PubMedGoogle Scholar
  119. Isaacks, R.E., C.Y. Kim, T.J. Legato, A.E. Johnson, P.H. Goldman, D.R. Harkness, and A. Costa. (1980). Studies on avian erythrocyte metabolism. IX. Relationship of changing organic phosphate composition to whole blood oxygen affinity during development of the ostrich (Struthio camelus camelus). Dev. Biol., 75, 485.PubMedGoogle Scholar
  120. Isaacks, R., C.Y. Kim, H.L. Liu, P.H. Goldman, A. Johnson, Jr., and D.R. Harkness. (1983). Studies on avian erythrocyte metabolism. XIII. Changing organic phosphate composition in age-dependent density populations of chicken erythrocytes. Poult. Sci., 62, 1639.PubMedGoogle Scholar
  121. James, A.E., G. Hutchins, M. Bush, T.K. Natarajan, and B. Burns. (1976). How birds breathe: Correlation of radiographic with anatomical and pathological studies. J. Am. Vet. Radiol. Soc., 17, 77.Google Scholar
  122. Jammes, Y., and P. Bouverot. (1975). Direct PCO2 measurements in the dorsobronchial gas of awake Pekin ducks: Evidence for a physiological role of the neopulmo in respiratory gas exchanges. Comp. Biochem. Physiol. 52A, 635.Google Scholar
  123. Jones, D.R., and M.J. Purves. (1970). The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck. J. Physiol. (London), 211, 295.Google Scholar
  124. Jones, D.R., and G.F. Holeton. (1972). Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia. J. Exp. Biol., 56, 657.PubMedGoogle Scholar
  125. Jones, D.R., and O.S. Bamford. (1978). The immediate effects of deafferentation of the lungs on heart and breathing frequencies in ducks. Can. J. Zool., 56, 149.Google Scholar
  126. Jones, D.R., and W.K. Milsom. (1982). Peripheral receptors affecting breathing and cardiovascular function in non-mammalian vertebrates. J. Exp. Biol., 100, 59.Google Scholar
  127. Jones, J.H., E.L. Effmann, and K. Schmidt-Nielsen. (1981). Control of air flow in bird lungs: Radiographic studies. Respir. Physiol., 45, 121.PubMedGoogle Scholar
  128. Jones, J.H., B. Grubb, and K. Schmidt-Nielsen. (1983). Panting in the emu causes arterial hypoxemia. Respir. Physiol., 54, 189.PubMedGoogle Scholar
  129. Kadono, H., and T. Okada. (1962). Electromyographic studies on the respiratory muscles of the domestic fowl. Jpn. J. Vet. Sci., 24, 215.Google Scholar
  130. Kadono, H., T. Okada, and K. Ono. (1963). Electromyographic studies on the respiratory muscles of the chicken. Poult. Sci., 42, 121.Google Scholar
  131. Kampe, G., and E.C. Crawford, Jr. (1973). Oscillatory mechanics of the respiratory system of pigeons. Respir. Physiol., 18, 188.PubMedGoogle Scholar
  132. Kawashiro, T., and P. Scheid. (1975). Arterial blood gases in undisturbed resting birds: Measurements in chicken and duck. Respir. Physiol., 23, 337.PubMedGoogle Scholar
  133. Keijer, E., and P.J. Butler. (1982). Volumes of the respiratory and circulatory systems in tufted and mallard ducks. J. Exp. Biol., 101, 213.Google Scholar
  134. Kiley, J.P., and M.R. Fedde. (1983a). Cardiopulmonary control during exercise in the duck. J. Appl. Physiol., 55, 1574.PubMedGoogle Scholar
  135. Kiley, J.P., and M.R. Fedde. (1983b). Exercise hyperpnea in the duck without intrapulmonary chemoreceptor involvement. Respir. Physiol., 53, 355.PubMedGoogle Scholar
  136. Kiley, J.P., W.D. Kuhlmann, and M.R. Fedde. (1979). Respiratory and cardiovascular responses to exercise in the duck. J. Appl. Physiol., 47, 827.PubMedGoogle Scholar
  137. Kiley, J.P., W.D. Kuhlmann, and M.R. Fedde. (1982). Ventilatory and blood gas adjustments in exercising isothermic ducks. J. Comp. Physiol., 147, 107.Google Scholar
  138. Kilgore, D.L., Jr., F.M. Faraci, and M.R. Fedde. (1984). Static response characteristics of intrapulmonary chemoreceptors in the pigeon and the burrowing owl, a species with a blunted ventilatory sensitivity to carbon dioxide. Fed. Proc. Fed. Am. Soc. Exp. Biol., 43, 638.Google Scholar
  139. King, A.S. (1966a). Structural and functional aspects of the avian lungs and air sacs. In “International Review of General and Experimental Zoology,” Vol. 2 (W.J.L. Felts and R.J. Harrison, Eds.). New York: Academic Press, p. 171.Google Scholar
  140. King, A.S . (1966b). Afferent pathways in the vagus and their influence on avian breathing: A review. In “Physiology of the Domestic Fowl” (C. Horton-Smith and E.C. Amoroso, Eds.). London: Oliver and Boyd, p. 3O2.Google Scholar
  141. King, A.S. (1975). Aves respiratory system. In “The Anatomy of the Domestic Animals,” 5th ed., Vol. 2 (R. Getty, Ed.). Philadelphia: Saunders, Chapter 64, p. 1883.Google Scholar
  142. King, A.S. (1979). Systema respiratorium. In “Nomina Anatomica Avium” (J.J. Baumel, A.S. King, A.M. Lucas, J.E. Breazile, and H.E. Evans, Eds.). London: Academic Press, p. 227.Google Scholar
  143. King, A.S., and A.F. Cowie. (1969). The functional anatomy of the bronchial muscle of the bird. J. Anat., 105, 323.PubMedGoogle Scholar
  144. King, A.S., and D.C. Payne. (1964). Normal breathing and the effects of posture in Gallus domesticus. J. Physiol. (London), 174, 340.Google Scholar
  145. King, A.S., and V. Molony. (1971). The anatomy of respiration. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 1 (O.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 93.Google Scholar
  146. King, A.S., J. McLelland, R.D. Cook, D.Z. King, and C. Walsh. (1974). The ultrastructure of afferent nerve endings in the avian lung. Respir. Physiol., 22, 21.PubMedGoogle Scholar
  147. King, A.S., D.Z. King, R.D. Hodges, and J. Henry. (1975). Synaptic morphology of the carotid body of the domestic fowl. Cell Tissue Res., 162, 459.PubMedGoogle Scholar
  148. Klentz, R.D., and M.R. Fedde. (1978). Hydrogen sulfide: Effects on avian respiratory control and intrapulmonary CO2 receptors. Respir. Physiol., 32, 355.PubMedGoogle Scholar
  149. Kobayashi, S. (1969). On the fine structure of the carotid body of the bird, Uroloncba domestica. Arch. Histol. Jpn., 31, 9.PubMedGoogle Scholar
  150. Kobayashi, S. (1971a). Comparative cytological studies of the carotid body. 1. Demonstration of monoamine-storing cells by correlated chromaffin reaction and fluorescence histochemistry. Arch. Histol. Jpn., 33, 319.PubMedGoogle Scholar
  151. Kobayashi, S. (1971b). Comparative cytological studies of the carotid body. 2. Ultrastructure of the synapses on the chief cell. Arch. Histol. Jpn., 33, 397.PubMedGoogle Scholar
  152. Kollias, G.V.,Jr., and I. McLeish. (1978). Effects of ketamine hydrochloride in red-tailed hawks (Buteo jamaicensis) I. — Arterial blood gas and acid base. Comp. Biochem. Physiol. 60C, 57.Google Scholar
  153. Kuhlmann, W.D., and M.R. Fedde, (1976). Upper respiratory dead space in the chicken: Its fraction of the tidal volume. Comp. Biochem. Physiol. 54A, 409.Google Scholar
  154. Kunz, A.L., and D.A. Miller. (1974a). Pacing of avian respiration with CO2 oscillation. Respir. Physiol., 22, 167.PubMedGoogle Scholar
  155. Kunz, A.L., and D.A. Miller. (1974b). Effects of feedback delay upon the apparent damping ratio of the avian respiratory control system. Respir. Physiol., 22, 179.PubMedGoogle Scholar
  156. Kunz, A.L., and R.D. Tallman, Jr. (1978). Effect of FICO2 dynamics on Ti and Ttot in spontaneously breathing birds. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 182.Google Scholar
  157. Kunz, A.L., R.D. Tallman, Jr., E.K. Michal, and R.K. Moore. (1979). Effect of carotid body denervation on pacing in unidirectionally ventilated chickens. Physiologist, 22, 73.Google Scholar
  158. Kunz, A.L., R.P. Kaminski, D.A. Rittinger, T.L. Clanton, and G.O. Ballam. (1984). Unified model explaining normal breathing, volume pacing and CO2 pacing in birds. Fed. Proc. Fed. Am Soc. Exp. Biol., 43, 431.Google Scholar
  159. Lacy, R.A., Jr. (1968). Mechanical determinants of panting frequency in the domestic fowl. M.S. Thesis, University of California, Davis.Google Scholar
  160. Lapennas, G.N., and R.B. Reeves. (1983). Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir. Physiol., 52, 27.PubMedGoogle Scholar
  161. Lasiewski, R.C. (1972). Respiratory function in birds. In “Avian Biology,” Vol. II (D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 287.Google Scholar
  162. Lasiewski, R.C., and W.A. Calder, Jr. (1971). A preliminary allometric analysis of respiratory variables in resting birds. Respir. Physiol., 11, 152.PubMedGoogle Scholar
  163. Lillo, R.S., and D.R. Jones. (1983). Influence of ischemia and hypoxia on breathing in ducks. J. Appl. Physiol., 55, 400.PubMedGoogle Scholar
  164. Locy, W.A., and O. Larsell. (1916a). The embryology of the bird’s lung based on observations of the domestic fowl. Part I. Am. J. Anat., 19, 447.Google Scholar
  165. Locy, W.A., and O. Larsell. (1916b). The embryology of the bird’s lung based on observations of the domestic fowl. Part II. Am. J. Anat., 20, 1.Google Scholar
  166. Lutz, P.L. (1980). On the oxygen affinity of bird blood. Am. Zool., 20, 187.Google Scholar
  167. Lutz, P.L., I.S. Longmuir, and K. Schmidt-Nielsen. (1974). Oxygen affinity of bird blood. Respir. Physiol., 20, 325.PubMedGoogle Scholar
  168. Macklem, P.T., P. Bouverot, and P. Scheid. (1979). Measure-ment of the distensibility of the parabronchi in duck lungs. Respir. Physiol., 38, 23.PubMedGoogle Scholar
  169. Magno, M. (1973). Cardio-respiratory responses to carotid body stimulation with NaCN in the chicken. Respir. Physiol., 17, 220.PubMedGoogle Scholar
  170. Magnussen, H., H. Willmer, and P. Scheid. (1976). Gas exchange in air sacs: Contribution to respiratory gas exchange in ducks. Respir. Physiol., 26, 129.PubMedGoogle Scholar
  171. Maina, J.N. (1982). A scanning electron microscopic study of the air and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia, 38, 614.PubMedGoogle Scholar
  172. Maina, J.N. (1984). Morphometries of the avian lung. 3. The structural design of the passerine lung. Respir. Physiol., 55, 291.PubMedGoogle Scholar
  173. Maina, J.N., and A.S. King. (1982). The thickness of the avian blood-gas barrier: qualitative and quantitative observations. J. Anat., 134, 553.PubMedGoogle Scholar
  174. Maina, J.N., M.A. Abdalla, and A.S. King. (1982). Light microscopic morphometry of the lung of 19 avian species. Acta Anat., 112, 264.PubMedGoogle Scholar
  175. Marder, J., and Z. Arad. (1975). The acid base balance of abdim’s stork (Sphenorbynchus abdimii) during thermal panting. Comp. Biochem. Physiol. 51A, 887.Google Scholar
  176. Martin, D.W., Jr. (1981). Structure and function of a protein- hemoglobin. In “Harper’s Review of Biochemistry,” 18th ed. (D.W. Martin, Jr., P.A. Mayes, and V.W. Rodwell, Eds.). Los Altos, California: Lange Medical Publications, p. 40.Google Scholar
  177. Mather, F.B., G.M. Barnas, and R.E. Burger. (1980). The influence of alkalosis on panting. Comp. Biochem. Physiol. 64A, 265.Google Scholar
  178. McLelland, J. (1970). The innervation of the air passages of the avian lung and observations on afferent vagal pathways concerned in the regulation of breathing. Ph.D. Thesis, University of Liverpool, Liverpool.Google Scholar
  179. McLelland, J., and V. Molony. (1983). Respiration. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 4 (B.M. Freeman, Ed.). New York: Academic Press, p. 63.Google Scholar
  180. Meyer, M., H. Worth, and P. Scheid. (1976). Gas-blood CO2 equilibrium in parabronchial lungs of birds. J. Appl. Physiol., 41, 3O2.PubMedGoogle Scholar
  181. Meyer, M., J.P. Holle, and P. Scheid. (1978). Bohr effect induced by CO2 and fixed acid at various levels of O2 saturation in duck blood. Pfleugers Arch., 376, 237.Google Scholar
  182. Michal, E.K., G.O. Ballam, and A.L. Kunz. (1981). Effects of CO2 and air sac volume on the activity of medullary respiratory neurons of the chicken. Physiologist, 24, 131.Google Scholar
  183. Miller, D.A. (1978). Effect of stretch on the respiratory pattern of a chicken. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 188.Google Scholar
  184. Miller, D.A. (1980). A CO2 threshold mechanism in a closed- loop avian respiratory system. J. Appl. Physiol., 48, 1O29.PubMedGoogle Scholar
  185. Miller, D.A., and A.L. Kunz. (1977). Evidence that a cyclic rise in avian pulmonary CO2 triggers the next inspiration. Respir. Physiol., 31, 193.PubMedGoogle Scholar
  186. Milsom, W.K., D.R.Jones, and G.R.J. Gabbott. (1981). On chemoreceptor control of ventilatory responses to CO2 in unanesthetized ducks. J. Appl. Physiol., 50, 1121.Google Scholar
  187. Mitchell, G.S., and J.L. Osborne. (1978). Avian intrapulmonary chemoreceptors: Respiratory response to a step decrease in PCO2. Respir. Physiol., 33, 251.PubMedGoogle Scholar
  188. Mitchell, G.S., and J.L. Osborne. (1979). Ventilatory responses to carbon dioxide inhalation after vagotomy in chickens. Respir. Physiol., 36, 81.Google Scholar
  189. Mitchell, G.S., and J.L. Osborne. (1980). A comparison between carbon dioxide inhalation and increased dead space ventilation in chickens. Respir. Physiol., 40, 227.PubMedGoogle Scholar
  190. Molony, V. (1974). Classification of vagal afferents firing in phase with breathing in Gallus domesticus. Respir. Physiol., 22, 57.PubMedGoogle Scholar
  191. Molony, V. (1978). Airway resistance. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 142.Google Scholar
  192. Molony, V., W. Graf, and P. Scheid. (1976). Effects of CO2 on pulmonary air flow resistance in the duck. Respir. Physiol., 26, 333.PubMedGoogle Scholar
  193. Murrish, D.E. (1982). Acid-base balance in three species of antarctic penguins exposed to thermal stress. Physiol. Zool., 55, 137.Google Scholar
  194. Niemeier, M.M. (1979). Structural and functional aspects of vocal ontogeny in Grus canadensis (Gruidae: Aves). Doctoral Dissertation, University of Nebraska, Lincoln.Google Scholar
  195. Nightingale, T.E., R.A. Boster, and M.R. Fedde. (1968). Use of the oxygen electrode in recording PO2 in avian blood. J. Appl. Physiol., 25, 371.Google Scholar
  196. Nye, P.C.G., and R.E. Burger. (1978). Chicken intrapulmonary chemoreceptors: Discharge at static levels of intrapulmonary carbon dioxide and their location. Respir. Physiol., 33, 299.PubMedGoogle Scholar
  197. Nye, P.C.G., and F.L. Powell. (1984). Steady-state discharge and bursting of arterial chemoreceptors in the duck. Respir. Physiol., 56, 369.PubMedGoogle Scholar
  198. Oberthür, W., G. Braunitzer, R. Baumann, and P.G. Wright. (1983). Die Primärstruktur der α- und β-Ketten der Hauptkomponenten der Hämoglobine des Strausses (Struthio ca- melus) und des Nandus (Rhea americana) (Struthioformes). Hoppe-Seyler’s Z. Physiol. Chem., 364, 119.PubMedGoogle Scholar
  199. Osborne, J.L., and G.S. Mitchell. (1978). Intrapulmonary and systemic CO2-chemoreceptor interaction in the control of avian respiration. Respir. Physiol., 33, 349.PubMedGoogle Scholar
  200. Osborne, J.L., R.E. Burger, and P.J. Stoll. (1977a). Dynamic responses of CO2-sensitive avian intrapulmonary chemoreceptors. Am. J. Physiol., 233, R15.PubMedGoogle Scholar
  201. Osborne, J.L., G.S. Mitchell, and F. Powell. (1977b). Ventila-tory responses to CO2 in the chicken: Intrapulmonary and systemic chemoreceptors. Respir. Physiol., 30, 369.PubMedGoogle Scholar
  202. Pattle, R.E. (1978). Lung surfactant and lung lining in birds. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 23.Google Scholar
  203. Peek, F.W., and R.E. Phillips. (1971). Repetitive vocalizations evoked by local electrical stimulation of avian brains. II. Anesthetized chickens (Gallus gallus). Brain Behav. Evol., 4, 417.PubMedGoogle Scholar
  204. Peek, F.W., O.M. Youngren, and R.E. Phillips. (1975). Repetitive vocalizations evoked by electrical stimulation of avian brains. IV. Evoked and spontaneous activity in expiratory and inspiratory nerves and muscles of the chicken (Gallus gallus). Brain Behav. Evol., 12, 1.PubMedGoogle Scholar
  205. Perry, S.F., and H.-R. Duncker. (1980). Interrelationship of static mechanical factors and anatomical structure in lung evolution. J. Comp. Physiol., 138, 321.Google Scholar
  206. Perutz, M.F. (1978). Hemoglobin structure and respiratory transport. Sci. Am., 239 (6), 92.PubMedGoogle Scholar
  207. Peterson, D.F., and M.R. Fedde. (1968). Receptors sensitive to carbon dioxide in lungs of chicken. Science, 162, 1499.PubMedGoogle Scholar
  208. Petschow, D., I. Wiirdinger, R. Baumann, J. Duhm, G. Braunitzer, and C. Bauer. (1977). Causes of high blood O2 affinity of animals living at high altitude. J. Appl. Physiol., 42, 139.PubMedGoogle Scholar
  209. Pettit, T.N., and G.C. Whittow. (1982). The initiation of pulmonary respiration in a bird embryo: Tidal volume and frequency. Respir. Physiol., 48, 209.PubMedGoogle Scholar
  210. Piiper, J. (1978). Origin of carbon dioxide in caudal air sacs of birds. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 148.Google Scholar
  211. Piiper, J., and P. Scheid. (1972). Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Respir. Physiol., 14, 115.PubMedGoogle Scholar
  212. Piiper, J., and P. Scheid. (1975). Gas transport efficacy of gills, lungs and skin: Theory and experimental data. Respir. Physiol., 23, 209.PubMedGoogle Scholar
  213. Piiper, J., and P. Scheid. (1982). Models for a comparative functional analysis of gas exchange organs in vertebrates. J. Appl. Physiol., 53, 1321.PubMedGoogle Scholar
  214. Piiper, J., F. Drees, and P. Scheid. (1970). Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. Respir. Physiol., 9, 234.PubMedGoogle Scholar
  215. Powell, F.L. (1982). Diffusion in avian lungs. Fed. Proc. Fed. Am. Soc. Exp. Biol., 41, 2131.Google Scholar
  216. Powell, F.L. (1983a). Respiration. In “Physiology and Behavior of the Pigeon” (M. Abs., Ed.). New York: Academic Press, p. 73.Google Scholar
  217. Powell, F.L. (1983b). Effects of acid-base balance on avian intrapulmonary chemoreceptors. In “Modeling and Control of Breathing” (B.J. Whipp and D.M. Wiberg, Eds.). Amsterdam: Elsevier Science Publishing Co., p. 70.Google Scholar
  218. Powell, F.L., and R.W. Mazzone. (1983). Morphometries of rapidly frozen goose lungs. Respir. Physiol., 51, 319.PubMedGoogle Scholar
  219. Powell, F.L., R.K. Gratz, and P. Scheid. (1978). Response of intrapulmonary chemoreceptors in the duck to changes in PCO2 and pH. Respir. Physiol., 35, 65.PubMedGoogle Scholar
  220. Powell, F.L., M.R. Fedde, R.K. Gratz, and P. Scheid. (1978). Ventilatory response to CO2 in birds. I. Measurements in the unanesthetized duck. Respir. Physiol., 35, 349.PubMedGoogle Scholar
  221. Powell, F.L., M.R. Barker, and R.E. Burger. (1980). Ventilatory response to the Pco profile in chicken lungs. Respir. Physiol., 41, 307. 2Google Scholar
  222. Powell, F.L., J. Geiser, R.K. Gratz, and P. Scheid. (1981). Airflow in the avian respiratory tract: Variations of O2 and CO2 concentrations in the bronchi of the duck. Respir. Physiol., 44, 195.PubMedGoogle Scholar
  223. Prange, H.D., J.S. Wasser, A.S. Gaunt, and S.L.L. Gaunt. (1984). Respiratory and thermoregulatory effects of tracheal coiling in cranes (Gruidae): The functions of a long trachea. Fed. Proc. Fed. Am. Soc. Exp. Biol., 43, 638.Google Scholar
  224. Richards, S.A. (1968). Vagal control of thermal panting in mammals and birds. J. Physiol., (London), 199, 89.Google Scholar
  225. Richards, S.A. (1969). Vagal function during respiration and the effects of vagotomy in the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol., 29, 955.PubMedGoogle Scholar
  226. Roberts, T.S. (1880). The convolution of the trachea in the sandhill and whooping cranes. Am. Nat. 14, 108.Google Scholar
  227. Rollema, H.S., and C. Bauer. (1979). The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J. Biol. Chem., 254, 12038.PubMedGoogle Scholar
  228. Scheid, P. (1978). Analysis of gas exchange between air capillaries and blood capillaries in avian lungs. Respir. Physiol., 32, 27.PubMedGoogle Scholar
  229. Scheid, P. (1979a). Mechanisms of gas exchange in bird lungs. Rev. Physiol. Biochem. Pharmacol., 86, 137.PubMedGoogle Scholar
  230. Scheid, P. (1979b). Respiration and control of breathing in birds. Physiologist, 22, 60.PubMedGoogle Scholar
  231. Scheid, P. (1981). Significance of unidirectional ventilation for avian pulmonary gas exchange. Physiologist, 24, 131.Google Scholar
  232. Scheid, P. (1982). Respiration and control of breathing. In “Avian Biology,” Vol. 6 (D.S. Farner, J.R. King, and K.C. Parkes, Eds.). New York: Academic Press, p. 405.Google Scholar
  233. Scheid, P., and J. Piiper. (1969). Volume, ventilation and compliance of the respiratory system in the domestic fowl. Respir. Physiol., 6, 298.PubMedGoogle Scholar
  234. Scheid, P., and J. Piiper. (1970). Analysis of gas exchange in the avian lung: Theory and experiments in the domestic fowl. Respir. Physiol., 9, 246.PubMedGoogle Scholar
  235. Scheid, P., and T. Kawashiro. (1975). Metabolic changes in avian blood and their effects on determination of blood gases and pH. Respir. Physiol., 23, 291.PubMedGoogle Scholar
  236. Scheid, P., and H. Slama. (1975). Remote-controlled device for sampling arterial blood in unrestrained animals. Pfleugers Arch., 356, 373.Google Scholar
  237. Scheid, P., H. Slama, R.N. Gatz, and M.R. Fedde. (1974a). Intrapulmonary CO2 receptors in the duck: III. Functional localization. Respir. Physiol., 22, 123.PubMedGoogle Scholar
  238. Scheid, P., H. Slama, and H. Willmer. (1974b). Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Respir. Physiol., 21, 19.PubMedGoogle Scholar
  239. Scheid, P., R.E. Burger, M. Meyer, and W. Graf. (1978a). Diffusion in avian pulmonary gas exchange: Role of the diffusion resistance of the blood-gas barrier and the air capillaries. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 136.Google Scholar
  240. Scheid, P., R.K. Gratz, F.L. Powell, and M.R. Fedde. (1978b). Ventilatory response to CO2 in birds. II. Contribution by intrapulmonary CO2 receptors. Respir. Physiol., 35, 361.PubMedGoogle Scholar
  241. Scheipers, G., T. Kawashiro, and P. Scheid. (1975). Oxygen and carbon dioxide dissociation of duck blood. Respir. Physiol., 24, 1.PubMedGoogle Scholar
  242. Schenk, A.G., C. Paul, and C. Vandecasserie. (1978). Respira-tory proteins in birds. In “Chemical Zoology, Vol. 10, Aves” (A.H. Brush, Ed.). New York: Academic Press, p. 359.Google Scholar
  243. Schmidt-Nielsen, K., J. Kanwisher, R.C. Lasiewski, J.E. Cohn, and W.L. Bretz. (1969). Temperature regulation and respiration in the ostrich. Condor, 71, 341.Google Scholar
  244. Sèbert, P. (1978). Do birds possess a central CO2-H+ ventilatory stimulus? IRCS Med. Sci., 6, 444.Google Scholar
  245. Sèbert, P. (1979). Mise en évidence de l’action centrale du stimulus CO2-[H+] de la ventilation chez le Canard Pékin. J. Physiol. (Paris), 75, 901.Google Scholar
  246. Taha, A.A.M., and A.S. King. (1983). Autoradiographic ob-servations on the innervation of the carotid body of the domestic fowl. Brain Res., 266, 193.PubMedGoogle Scholar
  247. Tallman, R.D., Jr., and A.L. Kunz. (1982). Changes in breath-ing pattern mediated by intrapulmonary CO2 receptors in chickens. J. Appl. Physiol., 52, 162.PubMedGoogle Scholar
  248. Tallman, R.D., Jr., and F.S. Grodins. (1982a). Intrapulmonary CO2 receptor discharge at different levels of venous PCO2. J. Appl. Physiol., 53, 1386.PubMedGoogle Scholar
  249. Tallman, R.D., Jr., and F.S. Grodins. (1982b). Intrapulmonary CO2 receptors and ventilatory response to lung CO2 loading. J. Appl. Physiol., 52, 1272.PubMedGoogle Scholar
  250. Taylor, C.R., and E.R. Weibel. (1981). Design of the mamma-lian respiratory system. I. Problem and strategy. Respir. Physiol., 44, 1.PubMedGoogle Scholar
  251. Torre-Bueno, J.R., J. Geiser, and P. Scheid. (1980). Incomplete gas mixing in air sacs of the ducks. Respir. Physiol., 42, 109.PubMedGoogle Scholar
  252. Tschorn, R.R., and M.R. Fedde. (1971). Motor unit recruitment pattern in a respiratory muscle of unanesthetized chickens. Poult. Sci., 50, 266.PubMedGoogle Scholar
  253. Tschorn, R.R., and M.R. Fedde. (1974). Effects of carbon monoxide on avian intrapulmonary carbon dioxide- sensitive receptors. Respir. Physiol., 20, 313.PubMedGoogle Scholar
  254. van Nice, P., C.P. Black, and S.M. Tenney. (1980). A compar-ative study of ventilatory responses to hypoxia with reference to hemoglobin O2-affinity in llama, cat, rat, duck, and goose. Comp. Biochem. Physiol. 66A, 347.Google Scholar
  255. Vos, H.J. (1934). Über den Weg der Atemluft in der Entenlunge. Z. Wiss. Biol. Vgl. Physiol., 21, 552.Google Scholar
  256. Walsh, C., and J. McLelland. (1974a). Intraepithelial axons in the avian trachea. Z. Zellforsch. Mikrosk. Anat., 147, 209.PubMedGoogle Scholar
  257. Walsh, C., and J. McLelland. (1974b). Granular ‘endocrine’ cells in avian respiratory epithelia. Cell Tissue Res., 153, 269.PubMedGoogle Scholar
  258. Weingarten, J.P., H.S. Rollema, C. Bauer, and P. Scheid. (1978). Effects of inositol hexaphosphate on the Bohr effect induced by CO2 and fixed acids in chicken hemoglobin. Pfleugers Arch., 377, 135.Google Scholar
  259. Wells, R.M.G. (1976). The oxygen affinity of chicken hemoglobin in whole blood and erythrocyte suspensions. Respir. Physiol., 27, 21.Google Scholar
  260. West, N.H., O.S. Bamford, and D.R.Jones. (1977). A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res., 176, 553.PubMedGoogle Scholar
  261. Yamaguchi, K., D. Nguyen-Phu, P. Scheid, and J. Piiper. (1985). Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. J. Appl. Physiol., 58, 1215.PubMedGoogle Scholar
  262. Zimmer, K. (1935). Beiträge zur Mechanik der Atmung bei den Vögeln in Stand und Flug. Zoologica, 33 (5 Heft 88), 1.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1986

Authors and Affiliations

  • M. R. Fedde

There are no affiliations available

Personalised recommendations