Alimentary Canal: Anatomy, Regulation of Feeding, and Motility

  • G. E. Duke


As do other avian systems, the digestive system shows adaptations for flight (Farner, 1960). In the mouth area, the teeth and heavy jaw bones and muscles of reptiles and mammals have been replaced by a much lighter beak, jaw bones, and jaw muscles in birds. Since birds do not chew food, the esophagus is large in diameter to accommodate larger food items. The heavy muscular gizzard, or muscular stomach (for mechanical digestion), and the proventriculus, or glandular stomach (Figure 11–1), are located within the main mass of the bird’s body. Less modification is evident in the avian small intestine and rectum; however, a cloaca is present as in reptiles.


Slow Wave Feed Intake Gastric Motility Alimentary Canal Domestic Fowl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, B., B. Anderson, E. Fabricius, and L. Svesson. (1960). Observations on central regulaion of body temperature and of food and water intake in the pigeon (Columba livia). Acta Physiol. Scand. 50, 328.Google Scholar
  2. Ahmad, A., R.C.P. Singh, and B.D. Garg. (1978). Evidence of non-cholinergic excitatory nervous transmission in chick ileum. Life Sci., 22, 1049.PubMedGoogle Scholar
  3. Akahori, F., M. Matsurra, and K. Arai. (1971). Studies on the movement of the alimentary canal. VI. Physiological values in growing female chicks and quails. Bull. Azabu Univ. Vet. Med., No. 22, p. 25 (English summary).Google Scholar
  4. Akester, A.R. (1967). Renal portal shunts in the kidney of domestic fowl. J. Anat., 101, 569.PubMedGoogle Scholar
  5. Akester, A.R., R.S. Anderson, K.J. Hill, and G.W. Osbaldiston. (1967). A radiographic study of urine flow in the domestic fowl. Br. Poult. Sci. 8, 209.PubMedGoogle Scholar
  6. Ali, H.A., and J. McLelland. (1979). Neuron number in the intestinal myenteric plexus of the domestic fowl (Gallus gallus). Zentralbl. Veterinaermed. 8, 277.Google Scholar
  7. Aylott, M.V., O.H. Vestad, J.F. Stephens, and D.E. Turk. (1968). Effect of coccidial infection upon passage rates of digestive tract contents of chicks. Poult. Sci. 46, 900.Google Scholar
  8. Bartholmew, G.A., and T.J. Cade. (1963). The water economy of land birds. Auk, 80, 504.Google Scholar
  9. Bartlet, A.L., and T. Hassen. (1971). Contraction of chicken rectum to nerve stimulation after blockade of sympathetic and parasympathetic transmission. Q. J. Exp. Physiol. 56, 178.Google Scholar
  10. Bennett, T. (1969a). The effects of hyoscine and anticholinesterases on cholinergic transmission to the smooth muscle cells of the avian gizzard. Br. J. Pharmacol., 37, 585.PubMedGoogle Scholar
  11. Bennett, T. (1969b). Studies on avian gizzard. Histochemical analysis of extrinsic and intrinsic innervation. Z. Zellforsch. Mikrosk. Anat., 98, 188.PubMedGoogle Scholar
  12. Bennett, T. (1969c). Nerve-mediated excitation and inhibition of the smooth muscle cells of avian gizzard. J. Physiol. (London), 204, 669.Google Scholar
  13. Bennett, T. (1974). Peripheral and autonomic nervous systems. In “Avian Biology” ( D.S. Farner and J.R. King, Eds). New York: Academic Press.Google Scholar
  14. Bennett, T., and J.L.S. Cobb. (1969a). Studies on avian gizzard morphology and innervation of smooth muscle. Z. Zellforsch. Mikrosk. Anat., 96, 173.PubMedGoogle Scholar
  15. Bennett, T., and J.L.S. Cobb. (1969b). Studies on avian gizzard: Auerbach’s plexus. Z. Zellforsch. Mikrosk. Anat., 99, 109.PubMedGoogle Scholar
  16. Bennett, T., and J. Malmfors. (1970). The adrenergic nervous system of domestic fowl. Z. Zellforsch. Mikrosk. Anat., 106, 22.PubMedGoogle Scholar
  17. Bolton, T.B. (1971). Physiology of nervous system. In “Physiology and Biochemistry of Fowl,” Vol. 2 (D.J. Bell and B.M. Freeman, Eds.). London: Academic Press, Chapter 28, p. 675.Google Scholar
  18. Bortoff, A. (1972). Digestion: Motility. Annu. Rev. Physiol., 34, 261.PubMedGoogle Scholar
  19. Branch J., and J.H. Cummings. (1978). Comparison of radio- opaque pellets and chromium sesquioxide as inert markers in studies requiring accurate fecal collections. Gut, 19, 371.PubMedGoogle Scholar
  20. Burnstock, C. (1969). Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Rev., 21, 247.PubMedGoogle Scholar
  21. Calhoun, M. (1954). “Microscopic Anatomy of the Digestive System.” Ames: Iowa State College Press.Google Scholar
  22. Campbell, C.S., and J.D. Davies. (1974). Licking rate of rats reduced by intraduodenal and intraportal glucose infusion. Physiol. Behav., 12, 357.PubMedGoogle Scholar
  23. Carpenter, J.W., C.M. Stein, A. Silverstein, and A. van Tienhoven. (1969). The effect of gold thioglucose on food consumption and reproduction of the Japanese quail. Poult. Sci., 48, 574.PubMedGoogle Scholar
  24. Chaney, S.G., and M.R. Kare. (1966). Emesis in Birds. J. Am. Vet. Med. Assoc., 149, 938.Google Scholar
  25. Chodnik, K.S. (1948). Cytology of the glands associated with the alimentary tract of the domestic fowl (Gallus domesticus). Q. J. Microsc. Sci., 89, 75.PubMedGoogle Scholar
  26. Christensen, J., S. Anuras, and R.L. Hauser. (1974). Migrating spike bursts and electrical slow waves in the cat colon. Effect of sectioning. Gastroenterology, 66, 240.PubMedGoogle Scholar
  27. Daniel, E.E. (1969). Digestion: Motor function. Annu. Rev. Physiol., 31, 203.PubMedGoogle Scholar
  28. Dansky, L.M., and F.W. Hill. (1952). Application of the chromic oxide indicator method to balance studies with growing chickens. J. Nutr., 47, 449.PubMedGoogle Scholar
  29. Denbow, D.M. (1983). Food intake and temperature response to injections of catecholamines into the lateral ventricle of the turkey brain. Poult. Sci., 62, 1088.PubMedGoogle Scholar
  30. Denbow, D.M., and R.D. Meyers. (1982). Inhibition of food intake of chickens following injections of cholecystokinin into the lateral ventricle of the brain. Poult. Sci., 61, 1449.Google Scholar
  31. Denbow, D.M., J.A. Cherry, H.P. VanKrey, and P.B. Siegel. (1982a). Food and water intake following injection of glucose into the lateral ventricle of the brain of broiler-type chicks. Poult. Sci., 61, 1713.PubMedGoogle Scholar
  32. Denbow, D.M., H.P. VanKrey, and J.A. Cherry. (1982b). Feeding and drinking response of young chicks to injections of serotonin into the lateral ventricle of the brain. Poult. Sci., 61, 150.PubMedGoogle Scholar
  33. Duke, G.E. (1982). Gastrointestinal motility and its regulation. Poult. Sci., 61, 1245.PubMedGoogle Scholar
  34. Duke, G.E. (1984). Avian Digestion. In “Duke’s Physiology of Domestic Animals,” 10th ed. ( M.J. Swenson, Ed.). Ithaca: Cornell University Press, p. 359.Google Scholar
  35. Duke, G.E., and O.A. Evanson. (1972). Inhibition of gastric motility by duodenal contents in turkeys. Poult. Sci., 51, 1625.PubMedGoogle Scholar
  36. Duke, G.E., and O.A. Evanson. (1976a). Diurnal cycles of gastric motility in normal and fasted turkeys. Poult. Sci., 55, 1082.Google Scholar
  37. Duke, G.E., and O.A. Evanson. (1976b). Gastroduodenal electrical potential changes and contractile activity in birds of prey. (Abstr.) Fed. Proc. Fed. Am. Soc. Exp. Biol., 35, 303.Google Scholar
  38. Duke, G.E., and D.D. Rhoades. (1977). Factors affecting meal to pellet intervals in great horned owls (Bubo virginianus). Comp. Biochem. Physiol. A, 56, 283.Google Scholar
  39. Duke, G.E., G.A. Petrides, and R.K. Ringer. (1968). Chromium-51 in food metabolizability and passage rate studies with the ring-necked pheasant. Poult. Sci., 48, 1356.Google Scholar
  40. Duke, G.E., H.E. Dziuk, and L. Hawkins. (1969). Gastrointestinal transit times in normal and bluecomb turkeys. Poult. Sci., 48, 835.Google Scholar
  41. Duke, G.E., H.E. Dziuk, and O.A. Evanson. (1972a). Gastric pressure and smooth muscle electrical potential changes in turkeys. Am. J. Physiol., 222, 167.PubMedGoogle Scholar
  42. Duke, G.E., O.A. Evanson, J.G. Ciganek, J.F. Miskowiec, and T.E. Kostuch. (1972b). Inhibition of gastric motility in turkeys by intraduodenal injections of ammino acid solutions. Poult. Sci., 51, 1749.Google Scholar
  43. Duke, G.E., O.A. Evanson, and A.A. Jagers. (1975a). Meal to pellet intervals in 14 species of captive raptors. Comp. Biochem. Physiol. A, 53, 1.Google Scholar
  44. Duke, G.E., T.E. Kostuch, and O.A. Evanson. (1975b). Gastroduodenal electrical activity in turkeys. Am. J. Dig. Dis., 20, 1047.PubMedGoogle Scholar
  45. Duke, G.E., T.E. Kostuch, and O.A. Evanson. (1975c). Electrical activity and intraluminal pressure changes in the lower small intestine of turkeys. Am. J. Dig. Dis., 20, 1040.PubMedGoogle Scholar
  46. Duke, G.E., O.A. Evanson, P.T. Redig, and D.D. Rhoades. (1976a). Mechanism of pellet egestion in great horned owls (Bubo virginianus). Am. J. Physiol., 213, 1824.Google Scholar
  47. Duke, G.E., O.A. Evanson, and P.T. Redig. (1976b). A cephalic influence on gastric motility upon seeing food in domestic turkeys, great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis). Poult. Sci., 55, 2155.PubMedGoogle Scholar
  48. Duke, G.E., W.D. Kuhlmann, and M.R. Fedde. (1977). Evidence for mechanoreceptors in the muscular stomach of the chicken. Poult. Sci., 56, 297.PubMedGoogle Scholar
  49. Duke, G.E., J.R. Kimmel, P.T. Redig, and H.G. Pollack. (1979). Influence of exogenous avian pancreatic polypeptide on gastrointestinal motility of domestic turkeys. Poult. Sci., 58, 239.PubMedGoogle Scholar
  50. Duke, G.E., O.A. Evanson, and B.J. Huberty. (1980). Electrical potential changes and contractile activity of the distal cecum of turkeys. Poult. Sci., 59, 1925.PubMedGoogle Scholar
  51. Dunston, W.A. (1970). Excessive drinking (polydipsia) in a Galapagos mockingbird. Comp. Biochem. Physiol., 36, 143.Google Scholar
  52. Dunston, W.A., and E.G. Buss. (1969). Abnormal water balance in a mutant strain of chickens. Science, 161, 167.Google Scholar
  53. Dunston, W.A., E.G. Buss, W.H. Sawyer, and H.W. Sokol. (1972). Hereditary polydipsia and polyuria in chickens. Am. J. Physiol., 222, 1167.Google Scholar
  54. Durham, K. (1983). The mechanism and regulation of pellet egestion in the Red-tailed hawk (Bubeo jamaicensis) and related gastrointestinal contractile activity. M. S. Thesis, University of Minnesota.Google Scholar
  55. Dziuk, H.E. (1971). Reverse flow of gastrointestinal contents in turkeys. (Abstr.). Fed. Proc. Fed. Am. Soc. Exp. Biol., 30, 610.Google Scholar
  56. Dziuk, H.E., and G.E. Duke. (1972). Cineradiographic studies of gastric motility in turkeys. Am. J. Physiol., 222, 159.PubMedGoogle Scholar
  57. Evered, M.D., and J.T. Fitzsimons. (1976). Drinking induced by angiotensin in the pigeon (Columba livia). J. Physiol. (London), 263, 193.Google Scholar
  58. Everett, S.D. (1968). Pharmacological responses of the isolated innervated intestine of the chick. Br. J. Pharmacol. Chemother., 33, 342.PubMedGoogle Scholar
  59. Everett, S.D., and S.P. Mann. (1967). Catecholamine release by histamine from the isolated intestine of the chick. Eur. J. Pharmacol., 1, 310.Google Scholar
  60. Farner, D.S. (1960). Digestion and the digestive system. In “Biology and Comparative Physiology of Birds,” Vol. I (A.J. Marshall, Ed.). London: Academic Press, p. 411.Google Scholar
  61. Fitzsimons, J.T. (1978). The role of the renin-angiotensin system in the regulation of extracellular fluid volume. In Skadhauge (1981).Google Scholar
  62. Fitzsimons, J.D., and M.D. Evered. (1978). Eledoison, substance P, and related peptides: intracranial dipsogens in the pigeon and antidipsogens in the rat. Brain Res., 150, 533.PubMedGoogle Scholar
  63. Gentle, M.J. (1971). The lingual taste buds of Gallus domesticus. L. Br. Poult. Sci., 12, 245.Google Scholar
  64. Gleaves, E.W., L.V. Tonkinson, J.D. Wolf, C.K. Harman, R.H. Thayer, and R.D. Morrison. (1968). The action and interaction of physiological food intake regulators in the laying hen. Poult. Sci., 47, 38.Google Scholar
  65. Goodman, I.J., and J.L. Brown. (1966). Stimulation of positively and negatively reinforcing sites in the avian brain. Life Sci., 5, 693.PubMedGoogle Scholar
  66. Gonalons, E., R. Rial, and J.A. Tur. (1982). Phenol red as indicator of digestive tract motility in chickens. Poult. Sci., 61, 581.PubMedGoogle Scholar
  67. Groebbels, F. (1932). “Der Vogel. Erster Band: Atmungswelt und Nahrungswelt.” Berlin: Verlag von Gebriider Borntraeger.Google Scholar
  68. Henken, A.M., A.M.J. Groote Schaarsberg, and W. van der Hel. (1982). The effect of environmental temperature on immune response and metabolism of the young chicken. 4. Effect of environmental temperature on some aspects of energy and protein metabolism. Poult. Sci., 62, 59.Google Scholar
  69. Hill, F.W., and L.M. Dansky. (1954). Studies of the energy requirements of chickens. I. The effects of dietary energy level in growth and feed consumption. Poult. Sci., 33, 112.Google Scholar
  70. Hill, K.J., and P.J. Strachan. (1975). Recent advances in digestive physiology of the fowl. In “Symposium of the Zoological Society of London, No. 35” ( M. Peaker, Ed.). London: Academic Press, p. 1.Google Scholar
  71. HillermanJ.P., F.H. Kratzer, and W.D. Wilson (1953). Food passage through chickens and turkeys and some regulating factors. Poult. Sci., 32, 332.Google Scholar
  72. Hodgkiss, J.P. (1981). Distension-sensitive receptors in the crop of the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. (A), 70, 73.Google Scholar
  73. Holcombe, D.J., D.A. Roland, Sr., and R.H. Harms. (1976). The ability of hens to regulate protein intake when offered a choice of diets containing different levels of protein. Poult. Sci., 55, 1731.Google Scholar
  74. Howard, B.R. (1968). Drinking activity of hens in relation to egg laying. (Abstr.) Proc. Int. Congr. Physiol. Sci., 24th, 1968, 7, 202.Google Scholar
  75. Howard, B.R. (1975). Water balance of the hen during egg formation. Poult. Sci., 54, 1046.PubMedGoogle Scholar
  76. Imabayashi, K., M. Kametaka, and T. Hatano. (1956). Studies on digestion in the domestic fowl. Tokyo J. Agric. Res., 2, 99.Google Scholar
  77. Jerrett, S.A., and W.R. Goodge. (1973). Evidence for amylase in avian salivary glands. J. Morphol., 139, 27.PubMedGoogle Scholar
  78. Kaufman, S., and G. Peters. (1980). Regulatory drinking in the pigeon Columba livia. Am. J. Physiol., 239, R219.PubMedGoogle Scholar
  79. Kimmel, J.R., H.G. Pollock, and R.L. Hazelwood. (1971). A new pancreatic polypeptide hormone. Fed. Proc. Fed. Am. Soc. Exp. Biol., 30, 1318.Google Scholar
  80. Kimmel, J.R., L.J. Hayden, and H.G. Pollock. (1975). Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem., 250, 9369.PubMedGoogle Scholar
  81. Kobayashi, H. (1978). Evolution of the target organ. In “Comparative Endocrinology” ( P.J. Gaillard and H.H. Boer, Eds.). Amsterdam: Elsevier/North Holland, p. 401.Google Scholar
  82. Kobayashi, H., and Y. Takei. (1982). Mechanisms for induction of drinking with special reference to angiotensin II. Comp. Biochem. Physiol. A, 71, 485.PubMedGoogle Scholar
  83. Komeri, S., and H. Ohashi (1984). Presynaptic muscarine inhibition of nonadrenergic, non-cholinergic neuromuscular transmission in the chicken rectum. Br. J. Pharmacol., 82, 73.Google Scholar
  84. Kostuch, T.E., and G.E. Duke. (1975). Gastric motility in great horned owls. Comp. Biochem. Physiol. (A), 51, 201.Google Scholar
  85. Kuenzel, W.J. (1972). Dual hypothalamic feeding system in a migratory bird, Zonotrichia albicollis. Am. J. Physiol. 223, 1138.PubMedGoogle Scholar
  86. Kuenzel, W.J. (1982). Central neural structures affecting food intake in birds: the lateral and ventral hypothalamic areas. In “Aspects of Avian Endocrinology: Practical and Theoretical Implications” (C.G. Scanes, M.A. Ottinger, A.D. Kenny, J. Balthazart, J. Gronshaw, and I. Chester-Jones, Eds.). Graduate Studies, Texas Technical University, 26, 211.Google Scholar
  87. Lai, H.C., and G.E. Duke. (1978). Colonic motility in domestic turkeys. Am. J. Dig. Dis., 23, 673.PubMedGoogle Scholar
  88. Larbier, M., N.C. Baptista, and J.C. Blum. (1977). Effect of diet composition on digestive transit and amino acid intestinal absorption in chickens. Ann. Biol. Anim. Biochim. Biophys., 17, 597.Google Scholar
  89. Lepkovsky, S. (1973). Hypothalamic adipose tissue interrela-tionships. Fed. Proc. Fed. Am. Soc. Exp. Biol., 31, 1705.Google Scholar
  90. Lepkovsky, S. and M. Yasuda. (1966). Hypothalamic lesions, growth and body composition of male chickens. Poultry Sci., 45, 582.Google Scholar
  91. Ludwick, J.R., and P. Bass. (1967). Contractile and electric activity of the extrahepatic biliary tract and duodenum. Surg. Obstet. Gynecol., 124, 536.Google Scholar
  92. Macowan, M.M., and H.E. Magee. (1932). Observations on digestion and absorption in fowls. Q. J. Exp. Physiol., 21, 275.Google Scholar
  93. Malagelada, J.R., S.E. Carter, M.L. Brown, and G.L. Carlson. (1980). Radiolabeled fiber, a physiologic marker for gastric emptying and intestinal transit of solids. Dig. Dis. Sci., 25, 81.PubMedGoogle Scholar
  94. Maley, M.J. (1969). Electrical stimulation of agonistric behavior of the mallard. Behavior, 34, 138.Google Scholar
  95. Mangold, E. (1950). “Die Verdauung bei den Nutztieren.” Berlin: Akademie-Verlag, p. 87.Google Scholar
  96. Matei-Vladescu, C., G. Apostol, and V. Popescu. (1977). Reduced food intake following cerebral intraventricular infusion of glucose in Gallus domesticus. Physiol. Behav., 19, 7.PubMedGoogle Scholar
  97. Mateos, G.G., J.L. Sell, and J.A. Eastwood. (1982). Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci., 61, 94.PubMedGoogle Scholar
  98. Maurice, D.V. (1983). Partial lipectomy and alterations in energy balance in chickens fed high and low fat diets. Fed. Proc. Fed. Am. Soc. Exp. Biol., 42, 668.Google Scholar
  99. McLelland, J. (1979). Digestive system. In “Form and Function in Birds” ( A.S. King and J. McLelland, Eds.). London: Academic Press, p. 69.Google Scholar
  100. Mu,J.Y., T.H. Yin, C.L. Hamilton, and J.R. Brobeck. (1968). Variability of body fat in hyperphagic rats. Yale J. Biol. Med., 41, 133.Google Scholar
  101. Nishida, T., Y.K. Paik, and M. Yasuda. (1969). LVIII. Blood vascular supply of the glandular stomach and muscular stomach. Jpn. J. Vet. Sci., 31, 51 (English summary).Google Scholar
  102. Nolf, P. (1937). On the existence in the bird of a system of intrinsic fibers connecting the stomach to the small intestine. J. Physiol., 90, 53 p.Google Scholar
  103. Nolf, P. (1938a). L’appareil nerveux de l’automatisme gastrique de l’oiseau. I. Essai d’analyse par la nicotine. Arch. Int. Physiol. Biochim., 46, 1.Google Scholar
  104. Nolf, P. (1938b). L’appareil nerveux de l’automatisme gas- trique de l’oiseau. II. Etude des effects causes par une ou plusieurs sections de l’anneau nerveux du gesier. Arch. Int. Physiol. Biochim., 46, 441.Google Scholar
  105. Ohashi, H. (1971). An electrophysiological study of transmission from intramural excitory nerve to smooth muscle cells of the chicken oesophagus. Jpn. J. Pharmacol., 21, 585.Google Scholar
  106. Oshima, S., K. Shimada, and T. Tonoue. (1974). Radiotele- metric observations of the durnal changes in respiration rate, heart rate and intestinal motility of domestic fowl. Poult. Sci., 53, 503.PubMedGoogle Scholar
  107. Pastea, E., A. Nicolau, and J. Rosea. (1968). Dynamics of the digestive tract in hens and ducks. Acta Physiol. Hung., 33, 305.Google Scholar
  108. Phillips, R.E., and O.M. Youngnen. (1971). Brain stimulation and species typical behavior. Activities evoked by electrical stimulation of the brains of chickens. Anim. Behav., 19, 757.PubMedGoogle Scholar
  109. Pintea, V., V. Jarubescu, and M. Cotrut. (1957). Contributiuni la studiul esofagului de gaina. Lucr. Stiint. Inst. Agron., 1, 297.Google Scholar
  110. Polin, D., and J.H. Wolford. (1973). Factors influencing food intake and caloric balance in chickens. Fed. Proc. Fed. Am. Soc. Exp. Biol., 32, 1720.Google Scholar
  111. Polin, D., E.R. Wynosky, M. Loukides, and C.C. Porter. (1967). A possible urinary back flow to ceca revealed by studies on chicks with artificial anus and fed amprolium-C14 or thiamine-C14. Poult. Sci., 46, 89.Google Scholar
  112. Prys-Jones, R.P., L. Schifferli, and D.W. Macdonald. (1973). The use of an emetic in obtaining food samples from passerines. Ibis, 116, 60.Google Scholar
  113. Radke, W.J., and M.J. Frydendall. (1974). A survey of emetics for use in stomach contents recovery in the house sparrow. Am. Midi. Nat., 92, 164.Google Scholar
  114. Rea, A.M. (1973). Turkey vultures casting pellets. Auk, 90, 209.Google Scholar
  115. Richardson, A.J. (1970). The role of the crop in the feeding behavior of the domestic chicken. Anim. Behav., 18, 633.PubMedGoogle Scholar
  116. Robinzon, B., N. Snapir, and S. Lepkovsky. (1982). Hypothalamic hyperphagia, obesity, and gonadal dysfunction: absence of consistent relationship between lesion site and physiological consequences. In “Aspects of Avian Endocrinology: Practical and Theoretical Implications” (C.G. Scanes, M.A. Ottinger, A.D. Kenny, J. Balthazart, j. Gronshaw, and I. Chester-Jones, Eds.) Graduate Studies, Texas Technical University, 26, 201.Google Scholar
  117. Roche, M., and J. Decerpit. (1977). Contrôles hormonal et nerveux de la motricité du tractue digestif de la pôule. Ann. Rech. Vet., 8, 25.PubMedGoogle Scholar
  118. Röseler, M. (1929). Die Bedeutung der Blinddärme des Haushuhnes für die Resorption der Nahrung und Verdauung der Rohfaser. Z. Tierz. Zuechtungsbid., 13, 281.Google Scholar
  119. Rouff, H.J., and K.F. Sewing. (1971). Die Rolle des Kropfs bei der Steuerung der Magensaftsekretion von Hühnern. Naunyn-Schmeidbergs Arch. Pharmakol. Exp. Pathol., 271, 142.Google Scholar
  120. Russell, J., and P. Bass. (1983). Labeling and gastric emptying of gels in dogs. Fed. Proc. Fed. Am. Soc. Exp. Biol., 42, 759.Google Scholar
  121. Savory, C.J. (1978). The relationship between food and water intake and the effects of water restriction on laying Brown leghorn hens. Br. Poult. Sci., 19, 631.Google Scholar
  122. Savory, C.J., and M.J. Gentle. (1980). Intravenous injections of cholecystokenin and caerulin suppress food intake in domestic fowls. Experientia, 36, 1191.PubMedGoogle Scholar
  123. Savory, C.J., G.E. Duke, and R.W. Bertoy. (1981). Influence of intravenous injections of cholecystokinin on gastrointestinal motility in turkeys and domestic fowls. Comp. Biochem. Physiol. A, 70, 179.Google Scholar
  124. Shirley, H.V., and A.V. Nalbandov. (1956). Effects of neurohypohysectomy in domestic chickens. Endocrinology, 58, 477.PubMedGoogle Scholar
  125. Shurlock, T.G.H., and J.M. Forbes. (1981a). Evidence for hepatic glucostatic regulation of food intake in the domestic chicken and its interaction with gastro-intestinal control. Br. Poult. Sci., 22, 333.PubMedGoogle Scholar
  126. Shurlock, T.G.H., and J.M. Forbes. (1981b). Factors affecting food intake in the domestic chicken: the effect of infusions of nutritive and non-nutritive substances into the crop and duodenum. Br. Poult. Sci., 22, 323.PubMedGoogle Scholar
  127. Sibbald, I.R. (1979). Passage of feed through the adult rooster. Poult. Sci., 58, 446.PubMedGoogle Scholar
  128. Skadhauge, E. (1981). Osmoregulation in birds. New York: Springer-Verlag.Google Scholar
  129. Smith, C.J.V. (1969). Alterations in the food intake of chickens as a result of hypothalamic lesions. Poult. Sci., 48, 475.PubMedGoogle Scholar
  130. Smith, C.J.V. (1979). The hypothalamus and the regulation of feed intake. Poult. Sci., 58, 1619.PubMedGoogle Scholar
  131. Sturkie, P.D. (Ed.). (1965). “Avian Physiology,” 2nd ed. Ithaca: Cornell University Press.Google Scholar
  132. Sturkie, P.D. (Ed.). (1976). “Avian Physiology,” 3rd ed. New York: Springer-Verlag.Google Scholar
  133. Sturkie, P.D., G. Dirner, and R. Gister. (1977). Shunting of blood from the renal portal to the hepatic portal circulation of chickens. Comp. Biochem. Physiol. A, 58, 213.Google Scholar
  134. Suzuki, M., and S. Nomura. (1975). Electromyographic studies on the deglutition movement in the fowl. Jpn. J. Vet. Sci., 37, 289.Google Scholar
  135. Takei, Y. (1977). Angiotensin and water intake in the Japanese quail (Coturnix coturnix japonica). Gen. Comp. Endocrinol., 31, 364.PubMedGoogle Scholar
  136. Thornton, P.A., P.J. Schaible, and L.F. Wolterink. (1956). Intestinal transit and skeletal retention of radioactive strontium in the chick. Poult. Sci., 35, 1055.Google Scholar
  137. Tuckey, R., B.E. March, and J. Biely. (1958). Diet and the rate of food passage in the growing chick. Poult. Sci., 37, 786.Google Scholar
  138. Tweeton,J.R., R.E. Phillips, and F.W. Peek. (1973). Feeding behavior elicited by electrical stimulation of the brain of chickens, Gallus gallus. Poult. Sci., 52, 165.Google Scholar
  139. Uden, P., P.E. Colucci, and P.J. Van Soest. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J. Sci. Food Agric., 31, 625.PubMedGoogle Scholar
  140. Uemura, H., H. Kobayashi, Y. Okawara, and K. Yamaguchi. (1983). Neuropeptides and drinking in birds. In “Avian Endogrinology: Environmental and Ecological Perspectives” (S. Mikami, K. Homma, and M. Wada, Eds.). Tokyo: Japan Scientific Society Press/Berlin: Springer-Verlag, p. 225.Google Scholar
  141. Vonk, H.H., and N. Postma. (1949). X-ray studies on the movements of the hen’s intestine. Physiol. Comp. Oecol., 1, 15.Google Scholar
  142. Wada, M., H. Kobayashi, and D.S. Farner. (1975). Induction of drinking in the White-crowned sparrow, Zonotrichia leuco- phrys gambelii, by intracranial injection of angiotensin II. Gen. Comp. Endocrinol., 26, 192.PubMedGoogle Scholar
  143. Webb, T.E., and J.R. Colvin. (1964). The composition, structure and mechanism of formation of the lining of the gizzard of the chicken. Can. J. Biochem., 42, 59.Google Scholar
  144. Wehner, G.R., and R.L. Harrold. (1982). Crop volume of chickens as affected by body size, sex, and breed. Poult. Sci., 61, 598.PubMedGoogle Scholar
  145. White, S.S. (1970). The larynx of Gallus domesticus. Ph.D. Thesis, University of Liverpool. In McLelland (1979).Google Scholar
  146. Wilson, E.K., F.W. Pierson, P.Y. Hester, R.L. Adams, and W.J. Stadelman. (1980). The effects of high environmental temperature on feed passage time and performance traits of Pekin ducks. Poult. Sci., 59, 2322.Google Scholar
  147. Wright, P. (1973). The neural basis of food and water intake in birds. Indian J. Physiol. Pharmacol., 17, 1.PubMedGoogle Scholar
  148. Yntema, C.L., and W.S. Hammond. (1952). Experiments on the origin and development of the sacral autonomic nerves in chick embryo. J. Exp. Zool., 129, 375.Google Scholar
  149. Ziswiler, V., and D.S. Farner. (1972). Digestion and digestive system. “Avian Biology,” Vol. II ( D.S. Farner and James R. King, Eds.). London: Academic Press, p. 343.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1986

Authors and Affiliations

  • G. E. Duke

There are no affiliations available

Personalised recommendations