Skip to main content

Concepts and Techniques Used in Metabolic Tracer Studies

  • Chapter

Abstract

Studies of ammonia, amino acid, fatty acid, and glucose metabolism have relied primarily on the use of 15N, 14C, 13C, and 3H-labeled compounds. However, tissue sampling and analysis of enriched metabolites, i.e., 15N and 13C by mass spectrometry [1] and NMR [2–4], and 14C and 3H by liquid scintillation counting, limit the application of these techniques for the noninvasive determination of in vivo tissue tracer kinetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berl, S., Takagaki, G., Clarke, D.D. and Waeisch, H.: Metabolic compartments in vivo: Ammonia and glutamic acid metabolism in brain and liver. J. Biol. Chem. 237: 2562–2569, 1962.

    PubMed  CAS  Google Scholar 

  2. Walker, T.E., Han, C.H., Koffman, V.H., London, R.E. and Matwiyoff, N.A.: 13C nuclear magnetic resonance studies of the biosynthesis by microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13. J. Biol. Chem. 257: 1189–1195, 1982.

    PubMed  CAS  Google Scholar 

  3. Herak, J.N. and Adamic, K.G.: Magnetic Resonance in Chemistry and Biology. Marcel Dekker, New York, 1971.

    Google Scholar 

  4. Gadian, D.G.: Nuclear Magnetic Resonance and Its Application to Living Systems. Oxford University Press, New York, 1982.

    Google Scholar 

  5. Levy, G.C., Lichter, R.L. and Nelson, G.L.: Carbon-13 Nuclear Magnetic Resonance Spectroscopy. 2nd ed., John Wiley and Sons, New York, 1980.

    Google Scholar 

  6. Smith, F. W.: Nuclear magnetic resonance in the investigation of cerebral disorders. J. Cerebral Blood Flow Metab. 3: 263–269, 1983.

    Article  CAS  Google Scholar 

  7. Phelps, M.E., Hoffman, E.J. and Kuhl, D.E.: Physiological tomography: a new approach to in vivo measure of metabolism and physiologic function. In Medical Radionuclide Imaging, International Atomic Energy Agency, Vienna, 1977, Vol. 1, pp. 233–253.

    Google Scholar 

  8. Barrio, J.R.: Biochemical parameters in radiopharmaceutical design. In Positron Emission Tomography of the Brain, Heiss, W.-D. and Phelps, M.E., eds., Springer-Verlag, New York, 1983, pp. 65–76.

    Google Scholar 

  9. Phelps, M.E.: Emission computed tomography. Semin. Nucl. Med. 7: 337–365, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Henze, E., Schelbert, H.R., Barrio, J.R., Egbert, J.E., Hansen, H.W., Mac- Donald, N.S. and Phelps, M.E.: Evaluation of myocardial metabolism, with N-13- and C-11-labelled amino acids and positron computed tomography. J. Nucl. Med. 23: 671–681, 1982.

    PubMed  CAS  Google Scholar 

  11. Cooper, A.J.L., McDonald, J.M., Gelbard, A.S., Gledhill, R.F. and Duffy, T.E.: The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254: 4982–4992, 1979.

    PubMed  CAS  Google Scholar 

  12. Barrio, J.R., Egbert, J.E., Henze, E., Schelbert, H.R. and Baumgartner, F.J.: L-[4-11C]Aspartic acid: enzymatic synthesis, myocardial uptake, and metabolism. J. Med. Chem. 25: 93–96, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Krivokapich, J., Barrio, J.R., Phelps, M.E., Watanabe, C.R., Keen, R.E., Padgett, H.C., Douglas, A. and Shine, K.I.: Kinetic characterization of,13N- ammonia and l3N-glutamine metabolism in rabbit heart. Am. J. Physiol. 246 (Heart Circ. Physiol. 12): H267 - H273, 1984.

    PubMed  CAS  Google Scholar 

  14. Krivokapich, J., Huang, S.-C., Phelps, M.E., Barrio, J.R., Watanabe, C.R., Selin, C.E. and Shine, K.I.: Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H884 - H895, 1982.

    PubMed  CAS  Google Scholar 

  15. Phelps, M.E., Barrio, J.R., Huang, S.-C., Keen, R.E., Chugani, H. and Mazziotta, J.C.: Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans with positron emission tomography. Ann. Neurol. 15 (Suppl): S192–S202, 1984.

    Article  PubMed  Google Scholar 

  16. Bida, G., Satyamurthy, N. and Barrio, J.R.: The synthesis of [F-18]labeled 2-deoxy-2-fluoro-D-glucose using glycals: a reexamination. J. Nucl. Med. 25: 1327–1334, 1984.

    PubMed  CAS  Google Scholar 

  17. Phillips, L. and Wray, V.: Stereospecific electronegative effects. Part I. The 19F nuclear magnetic resonance spectra of deoxyfluoro-D-glucopyranoses. J. Chem. Soc. (B)1618–1624, 1971.

    Google Scholar 

  18. Jewett, D.M., Potocki, J.F. and Ehrenkaufer, R.E.: A preparative gas-solid phase synthesis of acetylhypofluorite. Synth. Commun. 14: 45–51, 1984.

    Article  CAS  Google Scholar 

  19. Ehrenkaufer, R.E., Potocki, J.F. and Jewett, D.M.: Simple synthesis of F-18 labeled 2-fluoro-2-deoxy-D-glucose. J. Nucl. Med., 25: 333–337, 1984.

    PubMed  CAS  Google Scholar 

  20. Joliot, F. and Curie, I.: An artificial production of a new kind of radioelement. Nature 133: 201–202, 1934.

    Article  CAS  Google Scholar 

  21. Ruben, S., Hassid, W.Z. and Kamen, M.D.: Radioactive nitrogen in the study of N2 fixation by non-leguminous plants. Science 91: 578–579, 1940.

    Article  PubMed  CAS  Google Scholar 

  22. Nicholas, D.J.D., Silvester, D.J. and Fowler, J.F.: Use of radioactive nitrogen in studying nitrogen fixation in bacterial cells and their extracts. Nature 189: 634–636, 1961.

    Article  PubMed  CAS  Google Scholar 

  23. Thomas, J., Wolk, C.P., Shaffer, P.W., Austin, S.M. and Galonsky, A.: The initial organic products of fixation of 13N-labeled nitrogen gas by the blue-green alga Anabaena cylindrica. Biochem. Biophys. Res. Commun. 67: 501–507, 1975.

    Article  CAS  Google Scholar 

  24. Gersberg, R., Krohn, K., Peek, N. and Goldman, C.R.: Denitrification studies with 13N-labeled nitrate. Science 192: 1229–1231, 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Krohn, K.E. and Mathis, C.A.: The use of isotopic nitrogen as a biochemical tracer. In Short-Lived Radionuclides in Chemistry and Biology, Root, J.W. and Krohn, K.A., eds., American Chemical Society, 1981, pp. 233–249.

    Google Scholar 

  26. Iqbal, K. and Ottaway, J.H.: Glutamine synthetase in muscle and kidney. Biochem. J. 119: 145–156, 1970.

    PubMed  CAS  Google Scholar 

  27. Lindroth, P. and Mopper, K.: High performance liquid chromatographic determination of subpicomole amounts of amino acid by precolumn fluorescence derivization with o-phthaldialdehyde. Anal. Chem. 51: 1667–1674, 1979.

    Article  CAS  Google Scholar 

  28. Jones, B.N. and Gilligan, J.P.: o-Phthaldialdehyde precolumn derivization and reversed-phase high performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chromatogr. 266: 471–482, 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Hamilton, P.B.: Ion exchange chromatography of amino acids: a single column, high resolving, fully automatic procedure. Anal. Chem. 35: 2055–2064, 1963.

    Article  CAS  Google Scholar 

  30. Murayama, K. and Sugawara, T.: Resolution of 52 ninhydrin-positive compounds with a high-speed amino acid analyzer. Determination of carnosine and homocarnosine in biological materials. J. Chromatogr. 224: 315–320, 1981.

    Article  CAS  Google Scholar 

  31. Cunico, R.L. and Schlabach, T.: Comparison of ninhydrin and o-phthalaldehyde post-column detection techniques for high performance liquid chromatography of free amino acids. J. Chromatogr. 266: 461–470, 1983.

    Article  CAS  Google Scholar 

  32. Roth, M.: Fluorescence reaction for amino acids. Anal. Chem. 43: 880–882, 1971.

    Article  PubMed  CAS  Google Scholar 

  33. Roth, M. and Hampai, A.: Column chromatography of amino acids with fluorescence detection. J. Chromatogr. 83: 353–356, 1973.

    Article  PubMed  CAS  Google Scholar 

  34. Bohlen, P. and Schroeder, R.: High-sensitivity amino acid analysis: methodology for the determination of amino acid compositions with less than 100 picomoles of peptides. Anal. Biochem. 126: 144–152, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Wiedmeier, V.T., Porterfield, S.P. and Hendrich, C.E.: Quantitation of Dns-amino acids from body tissues and fluids using high performance liquid chromatography. J. Chromatogr. 231: 410–417, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. De Jong, C., Hughes, G.J., Van Wieringen, E. and Wilson, K.J.: Amino acid analyses by high-performance liquid chromatography: an evaluation of the usefulness of pre-column Dns derivatization. J. Chromatogr. 241: 345–359, 1982.

    Article  Google Scholar 

  37. Heinrikson, R.L. and Meredith, S.C.: Amino acid analysis by reverse-phase high performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 136: 65–74, 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Granberg, R.R.: High-resolution analysis of PITC-derivatized amino acids with UV and electrochemical detection. Liq. Chromatogr. 2: 776–781, 1984.

    CAS  Google Scholar 

  39. Radjai, M.K. and Hatch, R.T.: Fast determination of free amino acids by ion- pair high performance liquid chromatography using on-line post-column derivatization. J. Chromatogr. 196: 319–322, 1980.

    Article  CAS  Google Scholar 

  40. Dong, M.W. and DiCesare, J.L.: Amino acid analysis by liquid chromatography. An overview of five common methods. Liq. Chromatogr. 1: 222–228, 1983.

    CAS  Google Scholar 

  41. Hayashi, T., Tsuchiya, H. and Naruse, H.: Reversed-phase ion-pair chromatography of amino acids. Application to the determination of amino acids in plasma samples and dried blood on filter papers. J. Chromatogr. 274: 318–324, 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Gass, J.D. and Meister, A.: Computer analysis of the active site of glutamine synthetase. Biochemistry 9: 1380–1390, 1970.

    Article  PubMed  CAS  Google Scholar 

  43. Keen, R.E., Krivokapich, J., Barrio, J.R., Douglas, A., Wittmer, S., Shine, K. and Phelps, M.E.: Metabolic fate of L-[N-13]glutamate in normal isolated myocardium. J. Nucl. Med. 25: P79, 1984.

    Google Scholar 

  44. SokolofF, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, 0. and Shinohara, M.: The [14C]deoxy-glucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897–916, 1977.

    Article  PubMed  CAS  Google Scholar 

  45. Phelps, M.E., Hoffman, E.J., Huang, S.C. and Kuhl, D.E.: Positron tomography: an “in vivo” autoradiographic approach to measurement of cerebral hemodynamics and metabolism. In Cerebral Function, Metabolism and Circulation, Ingvar, D.H. and Lassen, N.A. eds., Munksgaard, Copenhagen, 1977, pp. 446–447.

    Google Scholar 

  46. Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C.E. and Kuhl, D.E.: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6: 371–388, 1979.

    Article  PubMed  CAS  Google Scholar 

  47. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M.E., Ido T., Casella, V., Fowler, J., Hoffman, E., Alavi, A. and Sokoloff, L.: The [18F]fluorodeoxy- glucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44: 127–137, 1979.

    PubMed  CAS  Google Scholar 

  48. Huang, S.C., Phelps, M.E., Hoffman, E.J., Sideris, K., Selin, C.E. and Kuhl, D.E.: Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E69–E82, 1980.

    PubMed  CAS  Google Scholar 

  49. Gallagher, B.M., Ansari, A., Atkins, H., Casella, V., Christman, D.R., Fowler, J.S., Ido, T., MacGregor, R.R., Som, P., Wan, C.N., Wolf, A.P., Kuhl, D.E. and Reivich, M.: Radiopharmaceuticals XXVII. 18F-labeled 2-de- oxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J. Nucl. Med. 18: 990–996, 1977.

    PubMed  CAS  Google Scholar 

  50. Gallagher, B.M., Fowler, J.S., Gutterson, N.I., MacGregor, R.R., Wan, C.-N. and Wolf, A.P.: Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro- D-glucose. J. Nucl. Med. 19: 1154–1161, 1978.

    PubMed  CAS  Google Scholar 

  51. Phelps, M.E., Hoffman, E.J., Selin, C.E., Huang, S.C., Robinson, G., Mac-Donald, N., Schelbert, H. and Kuhl, D.E.: Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J. Nucl. Med. 19: 1311–1319, 1978.

    PubMed  CAS  Google Scholar 

  52. Phelps, M.E., Schelbert, H.R., Hoffman, E.J., Huang, S.C. and Kuhl, D.E.: Positron tomography of the heart. Prog. Nucl. Med. 6: 183–209, 1980.

    PubMed  CAS  Google Scholar 

  53. Smith, C.B., Davidsen, L., Deibler, G., Patlak, C., Pettigrew, K. and Sokoloff, L.: A method for the determination of local rates of protein synthesis in brain. Trans. Am. Soc. Neurochem. 11: 94, 1980 (abstract).

    Google Scholar 

  54. Barrio, J.R., Phelps, M.E., Huang, S.-C., Keen, R.E., MacDonald, N.S., Smith, C. and Sokoloff, L.: Positron emitting labeled L-amino acids for measurement of protein synthesis. Trans. Am. Nucl. Soc. 41: 17–18, 1982.

    Google Scholar 

  55. Chaplin, E.G., Goldberg, A.L. and Diamond, I.: Leucine oxidation in brain slices and nerve endings. J. Neurochem. 26: 701–707, 1976.

    Article  PubMed  CAS  Google Scholar 

  56. Williamson, J.R., Walajtys-Roade, E. and Coll, K.E.: Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. J. Biol. Chem. 254: 11511–11520, 1979.

    PubMed  CAS  Google Scholar 

  57. Sokoloff, L. and Smith, C.: Biochemical principles for the measurement of metabolic rates in vivo. In Positron Emission Tomography of the Brain, Heiss, W.-D. and Phelps, M.E., eds., Springer-Verlag, New York, 1983, pp. 2–18.

    Google Scholar 

  58. Mortimore, G.E., Woodside, K.H. and Henry, J.E.: Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J. Biol. Chem. 247: 2776–2784, 1972.

    PubMed  CAS  Google Scholar 

  59. McKee, E.E., Cheung, J.Y., Rannels, D.E. and Morgan, H.E.: Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J. Biol. Chem. 253: 1030–1040, 1978.

    PubMed  CAS  Google Scholar 

  60. Schreiber, S.S., Evans, C.D., Ovatz, M. and Rothschild, M.A.: Problems in evaluating cardiac protein synthesis. J. Mol. Cell. Cardiol. 14: 307–312, 1982.

    Article  PubMed  CAS  Google Scholar 

  61. Airhart, J., Vidrich, A. and Khairallah, E.A.: Compartmentation of free amino acids for protein synthesis in rat liver. Biochem. J. 140: 539–548, 1974.

    PubMed  CAS  Google Scholar 

  62. Hod, Y. and Hershko, A.: Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J. Biol. Chem. 251: 4458–4467, 1976.

    PubMed  CAS  Google Scholar 

  63. Schreiber, S.S., Evans, C.D., Oratz, M. and Rothschild, M.A.: Protein synthesis and degradation in cardiac stress. Circ. Res. 48: 601–611, 1981.

    PubMed  CAS  Google Scholar 

  64. Martin, A.F., Rabinowitz, M., Blough, R., Prior, G. and Zak, R.: Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J. Biol. Chem. 252: 3422–3429, 1977.

    PubMed  CAS  Google Scholar 

  65. Vidrich, A., Airhart, J., Bruno, M.K. and Khairallah, E.A.: Compartmentation of free amino acids for protein biosynthesis. Biochem. J. 162: 257–266, 1977.

    PubMed  CAS  Google Scholar 

  66. Pardridge, W.M.: Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev. 63: 1481–1535, 1983.

    PubMed  CAS  Google Scholar 

  67. Kuhar, M.J., Murrin, L.C., Malouf, A.T. and Klemm, N.: Dopamine receptor binding in vivo: the feasibility of autoradiographic studies. Life Sci. 22: 203–210, 1978.

    Article  PubMed  CAS  Google Scholar 

  68. Laduron, P.M., Janssen, F.M. and Leyson, J.E.: Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem. Pharmacol. 27: 307–316, 1978.

    Article  PubMed  Google Scholar 

  69. Laduron, P.M., Janssen, F.M. and Leyson, J.E.: Spiperone: a ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem. Pharmacol. 27: 317–321, 1978.

    Article  PubMed  CAS  Google Scholar 

  70. Chugani, D.C., Barrio, J.R. and Phelps, M.E.: Spiperone metabolism: significance for kinetic modeling and nonspecific binding estimates. J. Nucl. Med. 24: P106, 1983.

    Google Scholar 

  71. Fowler, J.S., Arnett, C.D., Wolf, A.P., MacGregor, R.R., Norton, E.F. and Findley, A.M.: [11C]Spiroperidol: synthesis, specific activity determination and biodistribution in mice. J. Nucl. Med. 23: 437–445, 1982.

    PubMed  CAS  Google Scholar 

  72. Welch, M.J., Kilbourn, M.R., Mathias, C.J., Mintun, M.A. and Raichle, M.E.: Comparison in animal models of 18F-spiroperidol and 18F-haloperidol: potential agents for imaging the dopamine receptor. Life Sci. 33: 1687–1693, 1983.

    Article  PubMed  CAS  Google Scholar 

  73. Chugani, D.C., Barrio, J.R. and Phelps, M.E.: To what extent does [3H]spi- perone label serotonin receptors in vivo? Soc. Neurosci. Abstr. 9 (Part 1): 724, 1983.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Barrio, J.R., Keen, R.E., Chugani, D.C., Bida, G., Satyamurthy, N., Phelps, M.E. (1986). Concepts and Techniques Used in Metabolic Tracer Studies. In: Wieland, D.M., Tobes, M.C., Manger, T.J. (eds) Analytical and Chromatographic Techniques in Radiopharmaceutical Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4854-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4854-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9331-6

  • Online ISBN: 978-1-4612-4854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics