Antimicrobial Therapy and Bacterial Resistance

  • John L. Ho
  • Michael Barza
Part of the Clinical Perspectives in Obstetrics and Gynecology book series (CPOG)


Antibiotics are antimicrobial drugs that are produced naturally by microorganisms. The synthesis of antibiotics by microbes and the resistance of microbes to antibiotics are two sides of the same evolutionary coin. Both are strategies used by microorganisms to compete successfully with other microorganisms for scarce resources.1–6


Minimal Inhibitory Concentration Antimicrobial Therapy Antimicrob Agent Permeability Barrier Minimal Bactericidal Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopwood DA. Extrachromosomally determined antibiotic production. Annu Rev Microbiol. 1978; 32: 373–392.PubMedGoogle Scholar
  2. 2.
    Elwell LP, Shipley PL. Plasmid mediated factors associated with virulence of bacteria to animals. Annu Rev Microbiol. 1980; 34: 465–496.PubMedGoogle Scholar
  3. 3.
    Umezawa H. Studies on low molecular–weight immunomodifiers produced by microorganisms: result of ten years’ effort. Rev Infect Dis. 1984; 6: 412–420.PubMedGoogle Scholar
  4. 4.
    Tipper DJ, Bostian KA. Double–stranded ribonucleic acid killer system in yeasts. Microbiol Rev. 1984; 48: 125–156.PubMedGoogle Scholar
  5. 5.
    Wagman GH, Weinstein MJ. Antibiotics from micromonospora. Annu Rev Microbiol. 1980; 34: 537–551.PubMedGoogle Scholar
  6. 6.
    Aoki H, Okuhara M. Natural ß–lactam antibiotics. Annu Rev Microbiol. 1980; 34: 159–181.PubMedGoogle Scholar
  7. 7.
    Shahani KM, Chandan RC. Nutritional and healthful aspects of cultured and culture-containing dairy food. J Dairy Sci. 1979; 62: 1685–1694.PubMedGoogle Scholar
  8. 8.
    Shahani KM, Vakil JR, Kilara A. Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. I. Cultured conditions for production of antibiotics. Cult Dairy Prod J. 1976; 11: 14–36.Google Scholar
  9. 9.
    Shahani KM, Vakil JR, Kilara A. Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. I. Isolation of acidophilin from L. acidophilus. Cult Dairy Prod J. 1977; 12: 8–14.Google Scholar
  10. 10.
    Foster TJ. Plasmid–determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev. 1983; 47: 361–409.PubMedGoogle Scholar
  11. 11.
    Bingham AHA, Braton CJ, Atkinson T. Isolation and partial characterization of four plasmids from antibiotic-resistant thermophilic bacilli. J Gen Microbiol. 1979; 114: 401–408.PubMedGoogle Scholar
  12. 12.
    Dogherty A, Grandi G, Grandi R, et al. Naturally occuring macrolide-lincosamide-strepto-gramin B resistance in Bacillus licheniformis. J Bacteriol. 1981; 145: 129–137.Google Scholar
  13. 13.
    Polak J, Novick RP. Closely related plasmids from Staphylococcus aureus and soil bacilli. Plasmid. 1982; 7: 152–162.PubMedGoogle Scholar
  14. 14.
    Shaw WV. Chloramphenicol acetyltransferase. Enzymology and molecular biology. CRC Crit Rev Biochem. 1983; 14: 1–46.PubMedGoogle Scholar
  15. 15.
    Davies J. Mechanisms of resistance to aminoglycosides. Am J Med. 1977; 62: 868–873.PubMedGoogle Scholar
  16. 16.
    Gardner P, Smith DH, Beer H, Moellering RC Jr. Recovery of R–factors from a drug free community. Lancet. 1969; 2: 774–776.PubMedGoogle Scholar
  17. 17.
    Mare IJ. Incidence of R–factors among gram-negative bacteria in drug-free human and animal communities. Nature. 1968;220:1046– 1047.Google Scholar
  18. 18.
    Smith DH. R–factor infection of E. coli lyophilized in 1946. J Bacteriol. 1967; 94: 2071–2072.PubMedGoogle Scholar
  19. 19.
    Koch AL, Gross GH. Growth conditions and rifampin susceptibility. Antimicrob Agents Chemother. 1979; 15: 220–228.PubMedGoogle Scholar
  20. 20.
    Scudamore RA, Beveridge TJ, Goldner M. Outer membrane penetration barriers as components of intrinsic resistance to B-lactam and other antibiotics in E. coli K-12. Antimicrob Agents Chemother. 1979; 15: 182–189.PubMedGoogle Scholar
  21. 21.
    Curtis NA, Orr D, Ross GW, et al. Competition of B–lactam antibiotics for the penicillin-binding proteins. Antimicrob Agents Chemother. 1979; 16: 325–328.PubMedGoogle Scholar
  22. 22.
    Ghuysen JM, Shockman GD. Biosynthesis of peptidoglycan. In: Leive L, ed. Bacterial membranes and walls. Marcel Dekker, New York: 1973; 37–116.Google Scholar
  23. 23.
    Coulson AFW. Protens that bind the B-lactam antibiotics. Nature. 1984; 309: 668.PubMedGoogle Scholar
  24. 24.
    Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the B– lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979; 33: 113–137.PubMedGoogle Scholar
  25. 25.
    Tomasz A. Penicillin binding proteins: their role in B–lactam action and resistance. In: Root RK and Sande MA, eds. New dimensions in antimicrobial therapy. New York: Churchill Livingstone, 1984: 1–16.Google Scholar
  26. 26.
    Bryan LE. Mechanisms of action of aminoglycoside antibiotics. In: Root RK and Sande MA, eds. New dimensions in antimicrobial therapy. New York: Churchill Livingstone, 1984: 17–36.Google Scholar
  27. 27.
    Damper PD, Epstein W. Role of membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob Agents Chemother. 1981; 20: 803–808.PubMedGoogle Scholar
  28. 28.
    Mates SM, Eisenberg ES, Mandell LJ, et al. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc Natl Acad Sci USA. 1982; 79: 6693–6697.PubMedGoogle Scholar
  29. 29.
    Miller MH, Edberg SC, Mandel LJ, et al. Gentamicin uptake in the wild-type and aminogly- coside-resistant small-colony mutants of Stahy-lococcus aureus. Antimicrob Agents Chemother. 1980; 18: 722–729.PubMedGoogle Scholar
  30. 30.
    Bryan LE, Kowand SK, Van Der Elzen HM. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother. 1979; 15: 7–13.PubMedGoogle Scholar
  31. 31.
    Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative bacteria grown anaerobically. J Anti-microb Chemother. 1981;8 (Suppl D):l–8.Google Scholar
  32. 32.
    Tomasz A. Penicillin-binding proteins in bacteria. Ann Intern Med. 1982; 96: 502–504.PubMedGoogle Scholar
  33. 33.
    Tomasz A. From penicillin-binding proteins to lysis and death of bacteria: a 1979 view. Rev Infect Dis. 1979; 1: 434–440.PubMedGoogle Scholar
  34. 34.
    Spratt BG. Distinct penicillin binding proteins involved in the division, elongation and shape of Escherichia coli Kl 2. Proc Natl Acad Sci USA. 1975; 72: 2999–3003.PubMedGoogle Scholar
  35. 35.
    Lund F, Tybring L. 6B-amindinopenicillanic acids-a new group of antibiotics. Nature. 1972; 236: 135–137.Google Scholar
  36. 36.
    Dougherty TJ, Koller AC, Tomasz A. Penicillin-binding proteins of penicillin sensitive and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1980; 18: 730–737.PubMedGoogle Scholar
  37. 37.
    Zighelboim S, Tomasz A. Penicillin–binding proteins of multiple antibiotic resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980; 17: 434–442.PubMedGoogle Scholar
  38. 38.
    Hartman B, Tomasz A. Altered penicillin– binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1981; 19: 726–735.PubMedGoogle Scholar
  39. 39.
    Brown DFJ, Reynolds PE. Intrinsic resistance to B-lactam antibiotics in Staphylococcus aureus. FEBS Lett. 1980; 122: 275–278.PubMedGoogle Scholar
  40. 40.
    Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature. 1970; 227: 138–140.PubMedGoogle Scholar
  41. 41.
    Hörne D, Tomasz A. Lethal effects of a heterologous murein hydrolase on penicillin-treated Streptococcus sanquis. Antimicrob Agents Che-mother. 1980; 17: 235–246.Google Scholar
  42. 42.
    Gutman L, Tomasz A. Penicillin-resistant and penicillin-tolerant mutants in group A streptococci. Antimicrob Agents Chemother. 1982; 22: 128–136.Google Scholar
  43. 43.
    Sabath LD. Mechanisms of resistance to B-lactam antibiotics in strains of Staphylococcus aureus. Ann Intern Med. 1982; 97: 339–344.PubMedGoogle Scholar
  44. 44.
    Perkins HR, Nieto M. The chemical basis for the action of the vancomycin group of antibiotics. Ann NY Acad Sci. 1974; 235: 348–363.PubMedGoogle Scholar
  45. 45.
    Sud IJ, Feingold DS. Mechanism of polymyxin B resistance in Proteus mirabilis. J Bacteriol. 1970; 104: 289–294.PubMedGoogle Scholar
  46. 46.
    Edwards CQ, Smith CR, Baughman KL, Rogers JF, Leitman PS. Concentrations of gentamicin and amikacin in human kidneys. Antimi-crob Agents Chemother. 1976; 9: 925–927.Google Scholar
  47. 47.
    Barza M, Murray T, Hamburger RJ. Uptake of gentamicin by separated, viable renal tubules from rabbits. J Infect Dis. 1980; 141:510– 517.PubMedGoogle Scholar
  48. 48.
    Schacht J. Isolation of an aminoglycoside receptor from guinea pig inner ear tissues and kidney. Arch Otorhinolaryngol. 1979; 224: 129–134.PubMedGoogle Scholar
  49. 49.
    Chopra I, Howe TGB. Bacterial resistance to the tetracyclines. Microbiol Rev. 1978;42:707– 724.Google Scholar
  50. 50.
    Muller M. Mode of action of metronidazole on anaerobic microorganisms. In: Phillips I, Collier J, eds. Metronidazole (Royal Society of Medicine International Congress and Symposium Series, no. 18 ). London: Royal Society of Medicine and Academic Press, 1979.Google Scholar
  51. 51.
    Ingham HR, Hall CJ, Sisson PR, et al. The activity of metronidazole against facultatively anaerobic bacteria. J Antimicrob Chemother. 1980; 6: 343–347.PubMedGoogle Scholar
  52. 52.
    Wang JC. DNA–gyrations in reverse. Nature 1984; 309: 669–670.PubMedGoogle Scholar
  53. 53.
    Finland M, Frank PF, Wilcox C. In vitro susceptibility of pathogenic staphylococci to seven antibiotics. Am J Clin Pathol. 1950;20:325– 334.Google Scholar
  54. 54.
    Finland M. I. Prevalence of extrachromosomal drug resistance. Changes in susceptibility of selected pathogenic bacteria to widely used antibiotics. Ann NY Acad Sci. 1971; 182: 5–20.PubMedGoogle Scholar
  55. 55.
    Mitsuhashi S, ed. R-factor-drug resistance plasmid. Baltimore University Park Press, 1977.Google Scholar
  56. 56.
    Murray BE, Moellering RC. Patterns and mechanisms of antibiotic resistance. Med Clin N Am. 1979; 62: 899–924.Google Scholar
  57. 57.
    Grieco MH. Antibiotic resistance. Med Clin North Am. 1982; 66: 25–38.PubMedGoogle Scholar
  58. 58.
    Tally FP. Mechanisms of resistance. In: Condon R, Gorbach SL, eds. Surgical infections, selected antibiotic therapy. Baltimore: Williams and Wilkins, 1981.Google Scholar
  59. 59.
    Guiney DG Jr. Promiscuous transfer of drug resistance in gram negative bacteria. J Infect Dis. 1984; 149: 320–329.PubMedGoogle Scholar
  60. 60.
    Koch AL. Evolution of antibiotic resistance gene function. Microbiol Rev. 1981; 45: 355–378.PubMedGoogle Scholar
  61. 61.
    Davies J, Smith DI. Plasmid-determined resistance to antimicrobial agents. Annu Rev Microbiol. 1978; 32: 469–518.PubMedGoogle Scholar
  62. 62.
    Bawdon RE, Crane LR, Palchauduri S. Antibiotic resistance in anaerobic bacteria: molecular biology and clinical aspects. Rev Infect Dis. 1982; 4: 1075–1095.PubMedGoogle Scholar
  63. 63.
    Tally FP, Bieluch VM, Cuchural GJ, Antimicrobial resistance in bacteroides. Drugs Exp Clin Res. 1984; 10: 149–154.Google Scholar
  64. 64.
    Saunders J. Transposable resistance genes. Nature. 1975; 258: 384.Google Scholar
  65. 65.
    Schaeffers S, Perry W, Jones D. Methicillin resistance strains of Staphylococcus aureus phage type 92. Antimicrob Agents Chemother. 1979; 15: 74–80.Google Scholar
  66. 66.
    Lacey RW. Antibiotic resistance plasmids of staphylococcus and their clinical importance. Bacteriol Rev. 1975; 39: 2–32.Google Scholar
  67. 67.
    Jaffe HW, Sweeney HM, Nathan C, et al. Identity and interspecific transfer of gentamicin–resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis. J Infect Dis. 1980; 141: 738–747.PubMedGoogle Scholar
  68. 68.
    Clewell DS. Plasmids, drug resistance, and gene transfer in the genus streptococci. Microbiol Rev. 1981; 45: 409–436.PubMedGoogle Scholar
  69. 69.
    Hackenbeck RM, Tarpay M, Tomasz A. Multiple changes of penicillin binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumonia. Antimicrob Agents Chemother. 1980; 17: 364–371.Google Scholar
  70. 70.
    Hayes MV, Curtiss NAC, Wyke AW, Ward JB. Decrease affinity of a penicillin binding protein for B-lactam antibiotics in a clinical isolate of Staphylococcus aureus resistant to methicillin. FEBS Lett. 1981; 10: 119–122.Google Scholar
  71. 71.
    Curtiss NAC, Brown C, Boxall M, Boulton MG. Modified peptidoglycan transpeptidase activity in a carbenicillin-resistant mutant of Pseudomonas aeruginosa 18S. Antimicrob Agents Chemother. 1978; 14: 246–251.Google Scholar
  72. 72.
    Geoffrey AJ, Brown LE, Rabin HR. B-lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother. 1981; 19: 705–711.Google Scholar
  73. 73.
    Rodriguez-Tabar A, Rojo F, Damaso D, et al. Carbenicillin resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1982; 22: 255–261.Google Scholar
  74. 74.
    Mirelman D, Nuchamowitz Y, Rubenstein E. Insensitivity of peptidoglycan biosynthesis re¬actions to B–lactam antibiotics in a clinical iso–late of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1981; 19: 687–695.PubMedGoogle Scholar
  75. 75.
    Sykes RB, Matthew M. The B-lactamases of gram-negative bacteria and their role in resistance to B-lactam antibiotics. J Antimicrob Chemother. 1976; 2: 115–157.PubMedGoogle Scholar
  76. 76.
    Sanders CC, Sanders WEJ. Emergence of resistance during therapy with the newer B-lactam antibiotics: role of inducible B-lactamases and implications for the future. Rev Infect Dis. 1983; 5: 639–648.PubMedGoogle Scholar
  77. 77.
    Gutman L, Williamson R. A model system to demonstrate that B-lactamase-associated antibiotic trapping could be a potential means of resistance. J Infect Dis. 1983;148:316– 321.Google Scholar
  78. 78.
    Bell SM, Smith DD. Resistance of P. aeruginosa to carbenicillin. Lancet. 1969; 1: 753–754.PubMedGoogle Scholar
  79. 79.
    Olsson B, Dornbusch K, Nord CF. Factors contributing to resistance to B–lactam antibiotics in Bacteroides fragilis. Antimicrob Agents Che–mother. 1979; 15: 263–268.Google Scholar
  80. 80.
    Sabath LD, Wheeler N, Laverdiere M, et al. A new type of penicillin resistance in Staphylococcus aureus. Lancet. 1977; 1: 443–446.PubMedGoogle Scholar
  81. 81.
    Davies JE. Resistance to aminoglycosides: mechanisms and frequency. Rev Infect Dis. 1983; 5 (Suppl 2): S261–S267.Google Scholar
  82. 82.
    Bryan LE, van den Elzen HM. Spectrum of antibiotic resistance in clinical isolates of Pseudomonas aeruginosa. In: Schlessinger D, ed. Microbiology-1977. Washington, DC: American Society for Microbiology, 1977: 164-168.Google Scholar
  83. 83.
    Hedstrom RC, Crider BP, Eagon RG. Comparison of kinetics of active tetracycline uptake and active tetracycline efflux in sensitive and plasmid RP4-containing Pseudomonas putida. J Bacteriol. 1982; 152: 255–259.PubMedGoogle Scholar
  84. 84.
    McMurray L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sei USA. 1980; 77: 3974–3977.Google Scholar
  85. 85.
    Then RL. Mechanisms of resistance to trimethoprim, the sulfonamides, and trimethoprim-sulfamethoxazole. Rev Infect Dis. 1982; 4: 261–269.PubMedGoogle Scholar
  86. 86.
    Pinney RJ, Smith JT. Joint trimethoprim and sulfamethoxazole resistance in bacteria infected with R-factors. J Med Microbiol. 1973; 6: 13–19.PubMedGoogle Scholar
  87. 87.
    Maskell R, Okubadejo OA, Payne RH, Pead L. Human infections with thymine–requiring bacteria. J Med Microbiol. 1978; 11: 33–45.PubMedGoogle Scholar
  88. 88.
    Welch RA, Jones KA, Macrina FL. Transferable lincosamide-macrolide resistance in bacteroides. Plasmid. 1979; 1: 261–268.Google Scholar
  89. 89.
    Lorian R. Effects of subminimum inhibitory concentrations of antibiotics on bacteria. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980: 342–408.Google Scholar
  90. 90.
    Nicas TI, Bryan LE. Relationship between gentamicin susceptibility criteria and therapeutic serum levels for Pseudomonas aeruginosa in mouse infection model. Antimicrob Agents Chemother. 1978; 13: 796–801.PubMedGoogle Scholar
  91. 91.
    Tally FP. Factors affecting antimicrobial agents in an anerobic abscess. J Antimicrob Chemother. 1978; 4: 295–304.Google Scholar
  92. 92.
    Bryant RE, Hammond D. Interaction of purulent material with antibiotics used to treat Pseudomonas infections. Antimicrob Agents Chemother. 1974; 6: 702–707.PubMedGoogle Scholar
  93. 93.
    Vaudaux P, Waldvogel FA. Antimicrobial agents. Gentamicin inactivation in purulent exudates: role of cell lysis. J Infect Dis. 1980; 142: 586–593.PubMedGoogle Scholar
  94. 94.
    Carrizosa J, Kaye D. Antibiotic concentrations in serum, serum bactericidal activity, and results of therapy of streptococcal endocarditis in rabbits. Antimicrob Agents Chemother. 1977; 12: 479–483.PubMedGoogle Scholar
  95. 95.
    Sande MA. Antibiotic therapy of bacterial meningitis: lessons we’ve learned. Am J Med. 1981; 71: 507–510.PubMedGoogle Scholar
  96. 96.
    Decazes JM, Ernst JD, Sande Ma. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 1983; 24: 463–467.PubMedGoogle Scholar
  97. 97.
    Klastersky J, Daneau D, Swings G, Weerts D. Antibacterial activity in serum and urine as a therapeutic guide in bacterial infections. J Infect Dis. 1974; 129: 187–193.PubMedGoogle Scholar
  98. 98.
    Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980.Google Scholar
  99. 99.
    Ramirez-Ronda CH, Holmes RK, Sanford JP. Effects of divalent cations on binding of aminoglycoside antibiotics to human serum proteins and to bacteria. Antimicrob Agents Chemother. 1975; 7: 239–245.PubMedGoogle Scholar
  100. 100.
    Thrupp LD. Susceptibility testing of antibiotics in liquid media. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980: 73–113.Google Scholar
  101. 101.
    Barry AL. Procedures for testing antibiotics in agar media: theoretical considerations. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980:1– 23.Google Scholar
  102. 102.
    Acar JF. The disc susceptibility test. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980: 24–54.Google Scholar
  103. 103.
    Stamey TA, Fair WR, Timothy MM, Millar MA, et al. Serum versus urinary antimicrobial concentrations in cure of urinary–tract infec–tions. N Engl J Med. 1974; 291: 1159–1163.PubMedGoogle Scholar
  104. 104.
    Thornsberry C. Automation in antibiotic susceptibility testing. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980: 193–205.Google Scholar
  105. 105.
    Rosenblatt JE. Antibiotic susceptibility testing for anaerobes. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980: 114–134.Google Scholar
  106. 106.
    Gorbach SL, Bartlett JG. Medical progress: an¬aerobic infections. N Engl J Med, 1974;290: 1117–1184, 1237–1245.Google Scholar
  107. 107.
    Krogstad DJ, Moellering RC Jr. Combinations of antibiotics, mechanisms of interaction against bacteria. In: Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams 8c Wilkins, 1980: 298–341.Google Scholar
  108. 108.
    Ervin FR, Bullock WE Jr, Nuttall CE. Inactivation of gentamicin by penicillins in patients with renal failure. Antimicrob Agents Che-mother. 1976; 9: 1004–1011.Google Scholar
  109. 109.
    Moellering RC Jr, Wennersten CBG, Weinberg AN. Synergy of penicillin and gentamicin against enterococci. J Infect Dis. 1971; 124 (Suppl): S207–S209.PubMedGoogle Scholar
  110. 110.
    Moellering RC Jr, Weinberg AN. Studies on antibiotic synergism against enterococci. II. Ef-feet of various antibiotics on the uptake of 14C– labelled streptomycin by enterococci. J Clin Invest. 1971; 50: 2580–2584.PubMedGoogle Scholar
  111. 111.
    Klastersky J, Cappel R, Daneau D. Clinical significance of in vitro synergism between antibiotics in gram-negative infections. Antimicrob Agents Chemother. 1972; 2: 470–475.PubMedGoogle Scholar
  112. 112.
    KlasterskyJ, Hensgens C, Meunier-Carpentier F. Comparative effectiveness of combinations of amikacin with penicillin G and amikacin with carbenicillin in gram-negative septicemia: a double–blind clinical trial. J Infect Dis. 1976; 134 (Suppl): S433–S440.PubMedGoogle Scholar
  113. 113.
    Lau WK, Young LS, Black RE, et al. Compara¬tive efficacy and toxicity of amikacin/carbeni-cillin versus gentamicin/carbenicillin in leuko¬penic patients: a randomized prospective trial. Am J Med. 1977; 62: 959–966.PubMedGoogle Scholar
  114. 114.
    Lepper MH, Dowling HF. Treatment of pneumococcic meningitis with penicillin compared with penicillin plus aureomycin: studies including observations on an apparent antagonism between penicillin and aureomycin. Arch Intern Med. 1951; 88: 489–494.Google Scholar
  115. 115.
    Sande MA, Overton JW. In vivo antagonism between gentamicin and chloramphenicol in neutropenic mice. J Infect Dis. 1973; 128: 247–250.PubMedGoogle Scholar
  116. 116.
    Louie TJ, Onderdonk AB, Gorbach SL, Bartlett JG. Therapy for experimental intraabdominal sepsis; comparison of four cephalosporins with clindamycin plus gentamicin. J Infect Dis. 1977; 135 (Suppl): S18–S24.PubMedGoogle Scholar
  117. 117.
    Ho JL, Barza M. Chemotherapy of infection. In: Gleicher N, ed. Principles of medical therapy in pregnancy. 1984: 371–381.Google Scholar
  118. 118.
    Gorbach SL, Bartlett JG. Pseudomembranous enterocolitis. A review of its diverse forms. J Infect Dis. 1977; 135 (Suppl): S89–S94.PubMedGoogle Scholar
  119. 119.
    Levine BB, Zolov DM. Prediction of penicillin allergy and the heterogeneous immune responses of man to benzylpenicillin. J Clin Invest. 1966; 45: 1895–1906.PubMedGoogle Scholar
  120. 120.
    Buening MK, Wold JS. Ethanol-moxalactam interactions in vivo. Rev Infect Dis. 1982; 4 (Suppl.): S555–S563.PubMedGoogle Scholar
  121. 121.
    Bang NU, Tessler SS, Heidenreich RO, et al. Effects of moxalactam on blood coagulation and platelet function. Rev Infect Dis. 1982; 4 (Suppl): S546–S554.PubMedGoogle Scholar
  122. 122.
    Lipsky JJ. Mechanism of the inhibition of the γ–carboxylation of glutamic acid by N-methylthiotetrazole-containing antibiotics. Proc Natl Acad Sci. 1984; 81: 2893–2897.PubMedGoogle Scholar
  123. 123.
    Mandell GL, Douglas RG, Bennett JE, eds. Principles and practice of infectious diseases, 2nd ed.. New York: John Wiley 8c Sons, 1985: 153–333.Google Scholar
  124. 124.
    Gilman AG, Goodman LS, Gilman A, eds: The pharmacological basis of therapeutics, 6th ed. New York: Macmillan, 1980: 1013–1256.Google Scholar
  125. 125.
    Wallace RJ, Swenson JM, Silcox VA, et al. Spectrum of disease due to rapidly growing mycobacteria. Rev Infect Dis. 1983; 5: 657–679.PubMedGoogle Scholar
  126. 126.
    Keebler C, Chatawani A, Schwartz R. Actinomycosis infection associated with intrauterine contraceptive device. Am J Obstet Gynecol. 1983; 145: 596–599.PubMedGoogle Scholar
  127. 127.
    The medical Letter. 1984;26:5–10.Google Scholar
  128. 128.
    Gump D, Dickstein S, Gibson M. Endometritis related to Chlamydia trachomatis infection. Ann Intern Med. 1981; 95: 61–63.PubMedGoogle Scholar
  129. 129.
    Center of Disease Control. Sexually transmitted diseases treatment guidelines, 1982. MMWR. 1982; 31 (Suppl): 33S–60S.Google Scholar
  130. 130.
    Crider SR, Colby SD, Miller L, et al. Treatment of penicillin–resistant Neisseria gonorrhaeae with oral norfloxacin. N Engl J Med. 1984; 311: 137–140.PubMedGoogle Scholar
  131. 131.
    Tedesco FJ. Pseudomembranous colitis: pathogenesis and therapy. Med Clin North Am. 1982; 66: 655–664.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1986

Authors and Affiliations

  • John L. Ho
  • Michael Barza

There are no affiliations available

Personalised recommendations