Advertisement

Antibodies Specific for the Mac-1, LFA-1, p150,95 Glycoproteins or Their Family, or for Other Granulocyte Proteins, in the 2nd International Workshop on Human Leukocyte Differentiation Antigens

  • Timothy A. Springer
  • Donald C. Anderson

Abstract

A family of functionally important leukocyte surface glycoproteins which share a common ß subunit of M r = 95,000 has recently been defined in humans and mice (1,2). These glycoproteins, the lymphocyte function- associated 1 (LFA-1), macrophage 1 (Mac-1), and p150,95 molecules each contain a different α subunit noncovalently associated with the common ß subunit in an α1 ß 1 structure. Monoclonal antibodies specific for the LFA-1 and Mac-1 molecules have allowed definition of their cell distributions and functions.

Keywords

Patient Cell Complement Receptor Type Human Leukocyte Differentiation Antigen Healthy Adult Control Glycoprotein Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanchez–Madrid, F., J. Nagy, E. Robbins, P. Simon, andT.A. Springer. 1983. A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit: the lymphocyte–function associated antigen (LFA–1), the C3bi complement receptor (OKM1/Mac–1), and the p150,95 molecule. J. Exp. Med. 158: 1785.PubMedCrossRefGoogle Scholar
  2. 2.
    Sanchez–Madrid, F., P. Simon, S. Thompson, and T.A. Springer. 1983. Map–ping of antigenic and functional epitopes on the alpha and beta subunits of two related glycoproteins involved in cell interactions, LFA–1 and Mac–1. J. Exp. Med. 158: 586.PubMedCrossRefGoogle Scholar
  3. 3.
    Krensky, A.M., F. Sanchez–Madrid, E. Robbins, J. Nagy, T.A. Springer, and S.J. Burakoff. 1983. The functional significance, distribution, and structure of LFA–1, LFA–2, and LFA–3: cell surface antigens associated with CTL–target interactions. J. Immunol. 131: 611.PubMedGoogle Scholar
  4. 4.
    Hildreth, J.E.K., F.M. Gotch, P.D.K. Hildreth, and A.J. McMichael. 1983. A human lymphocyte–associated antigen involved in cell–mediated lympholysis. Eur. J. Immunol. 13: 202.PubMedCrossRefGoogle Scholar
  5. 5.
    Springer, T.A., D. Davignon, M.K. Ho, K. Kürzinger, E. Martz, and F. Sanchez–Madrid. 1982. LFA–1 and Lyt–2,3, molecules associated with T lymphocyte–mediated killing; and Mac–1, an LFA–1 homologue associated with complement receptor function. Immunol. Rev. 68: 111.CrossRefGoogle Scholar
  6. 6.
    Springer, T.A., R. Rothlein, D.C. Anderson, S.J. Burakoff, and A.M. Krensky. 1985. The function of LFA–1 in cell–mediated killing and adhesion: Studies on heritable LFA–1, Mac–1 deficiency and on lymphoid cell self–aggregation. In: Mechanisms of cell–mediated cytotoxicity II, Plenum Press, New York, p. 311.Google Scholar
  7. 7.
    Springer, T.A., W.S. Thompson, L.J. Miller, F.C. Schmalstieg, and D.C. Anderson. 1984. Inherited deficiency of the Mac–1, LFA–1, p150,95 glycoprotein family and its molecular basis. J. Exp. Med., 160: 1901.PubMedCrossRefGoogle Scholar
  8. 8.
    Beller, D.I., T.A. Springer, and R.D. Schreiber. 1982. Anti–Mac–1 selectively inhibits the mouse and human type three complement receptor. J. Exp. Med. 156: 1000–1009.Google Scholar
  9. 9.
    Wright, S.D., P.E. Rao, W.C. Van Voorhis, L.S. Craigmyle, K. Iida, M.A. Talle, E.F. Westberg, G. Goldstein, and S.C. Silverstein. 1983. Identification of the C3bi receptor of human monocytes and macrophages with monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 80: 5699.PubMedCrossRefGoogle Scholar
  10. 10.
    Arnaout, M.A., R.F. Todd III, N. Dana, J. Melamed, S.F, Schlossman, and H. R. Colten., 1983. Inhibition of phagocytosis of complement C3– or immunoglobulin G–coated particles and of C3bi binding by monoclonal antibodies to a monocyte–granulocyte membrane glycoprotein (Mol). J. Clin. Invest. 72: 171.PubMedGoogle Scholar
  11. 10.
    Arnaout, M.A., R.F. Todd III, N. Dana, J. Melamed, S.F, Schlossman, and H. R. Colten., 1983. Inhibition of phagocytosis of complement C3– or immunoglobulin G–coated particles and of C3bi binding by monoclonal antibodies to a monocyte–granulocyte membrane glycoprotein (Mol). J. Clin. Invest. 72: 171.PubMedGoogle Scholar
  12. 12.
    Kurzinger, K., and T.A. Springer. 1982. Purification and structural characterization of LFA–1, a lymphocyte function–associated antigen, and Mac–1, a related macrophage differentiation antigen. J. Biol. Chem. 257: 12412.PubMedGoogle Scholar
  13. 13.
    Kurzinger, K., M.K. Ho, and T.A. Springer. 1982. Structural homology of a macrophage differentiation antigen and an antigen involved in T–cell–mediated killing. Nature 296: 668.PubMedCrossRefGoogle Scholar
  14. 14.
    Trowbridge, I.S., and M.B. Omary. 1981. Molecular complexity of leukocyte surface glycoproteins related to the macrophage differentiation antigen Mac–1. J. Exp. Med. 154: 1517.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanchez–Madrid, F., A.M. Krensky, C.F. Ware, E. Robbins, J.L. Strominger, S.J. Burakoff, and T.A. Springer. 1982. Three distinct antigens associated with human T lymphocyte–mediated cytolysis: LFA–1, LFA–2, and LFA–3. Proc. Natl. Acad. Sci. U.S.A. 79: 7489.PubMedCrossRefGoogle Scholar
  16. 16.
    Ware, C.F., F. Sanchez–Madrid, A.M. Krensky, S.J. Burakoff, J.L. Strominger, and T.A. Springer. 1983. Human lymphocyte function associated antigen–1 (LFA–1): identification of multiple antigenic epitopes and their relationship to CTL–mediated cytotoxicity. J. Immunol. 131: 1182.PubMedGoogle Scholar
  17. 17.
    Krensky, A.M., E. Robbins, T.A. Springer, and S.J. Burakoff. 1984. LFA–1, LFA–2 and LFA–3 antigens are involved in CTL–target conjugation. J. Immunol. 132: 2180.PubMedGoogle Scholar
  18. 18.
    Beatty, P.G., J.A. Ledbetter, P.J. Martin, T.H. Price, and J.A. Hansen. 1983. Definition of a common leukocyte cell–surface antigen (Lp95–150) associated with diverse cell–mediated immune functions. Immunol 131: 2913.Google Scholar
  19. 19.
    Dana, N., R.F. Todd III, J. Pitt, T.A. Springer, and M.A. Arnaout. 1984. Deficiency of a surface membrane glycoprotein (Mol) in man. J. Clin. Invest. 73: 153.PubMedCrossRefGoogle Scholar
  20. 20.
    Beatty, P.G., J.M. Harlan, H. Rosen, J.A. Hansen, H.D. Ochs, T.D. Price, R.F. Taylor, and S.J. Klebanoff. 1984. Absence of monoclonal–antibody–defined protein complex in boy with abnormal leucocyte function. Lancet 1984 (1): 535.CrossRefGoogle Scholar
  21. 21.
    Anderson, D.C., F.C. Schmalstieg, S. Kohl, M.A. Arnaout, B.J. Hughes, M.F. Tosi, G.J. Buffone, B.R. Brinkley, W.D. Dickey, J.S. Abramson, T.A. Springer, L.A. Boxer, J.M. Hollers, and C.W. Smith. 1984. Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): Common relationship to diminished cell adherence. J. Clin. Invest. 74: 536.PubMedCrossRefGoogle Scholar
  22. 22.
    Kohl, S., T.A. Springer, F.C. Schmalstieg, L.S. Loo, and D.C. Anderson. 1984. Defective natural killer cytotoxicity and polymorphonuclear leukocyte antibody–dependent cellular cytotoxicity in patients with LFA–1/OKM–1 deficiency. J. Immunol., 133: 2972.PubMedGoogle Scholar
  23. 23.
    Springer, T.A., A. Bhattacharya, J.T. Cardoza, and F. Sanchez–Madrid, 1982. Monoclonal antibodies specific for rat IgGl, IgG2a, and IgG2b subclasses, and kappa chain monotypic and allotypic determinants: Reagents for use with rat monoclonal antibodies. Hybridoma 1: 257.PubMedCrossRefGoogle Scholar
  24. 24.
    Fearon, D.T., and W.W. Wong. 1983. Complement ligand–receptor interactions that mediate biological responses. Annu. Rev. Immunol. 1: 243.PubMedCrossRefGoogle Scholar
  25. 25.
    Fleit, H.B., S.D. Wright, and J.C. Unkeless. 1982. Human neutrophil Fc–gamma receptor distribution and structure. Proc. Natl. Acad. Sci. U.S.A. 79: 3275.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Timothy A. Springer
  • Donald C. Anderson

There are no affiliations available

Personalised recommendations