Unequivocal Regeneration of Rat Optic Nerve Axons into Sciatic Nerve Isografts

  • Martin Berry
  • Lowell Rees
  • Jobst Sievers
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


It is now established that central axons grow for long distances within a peripheral nerve when the latter is implanted into the central nervous system (CNS) (Aguayo et al. 1979, 1982, 1983, 1984, Richardson et al. 1980, 1981, 1984, Benfey and Aguayo 1982). However, peripheral axons poorly penetrate grafts of CNS tissue implanted between the cut ends of a peripheral nerve (Aguayo et al 1978, Weinberg and Spencer 1979, Perkins et al 1980), and few regenerate past the root/cord junction after dorsal root injury (Kimmel and Moyer 1947, Moyer et al. 1953, Stensaas et al. 1979), while CNS axons growing in peripheral nerve bridges extend for only short distances beyond both CNS/PNS interfaces (David and Aguayo 1981, Aguayo et al. 1982, 1984). Moreover, central axons growing in a peripheral nerve graft behave like peripheral nerve axons if they are damaged in this site, that is, they readily regenerate (David and Aguayo 1985). This distinctively different behavior of growing central axons in the two environments suggests that growth fails in the CNS either because factors normally required for elongation are absent from the mature CNS or because other possibilities are operating, e.g., inhibitors act by blocking receptor sites for trophic substances on axonal membrane (Berry 1983, 1985).


Optic Nerve Ganglion Cell Sciatic Nerve Retinal Ganglion Cell Ganglion Cell Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguayo, A.J., Benfey, M., David, D. (1983). A potential for axonal regeneration in neurons of the adult mammalian nervous system. Birth Defect: Original Article Series 19, 327–340.Google Scholar
  2. Aguayo, A.J., Bjorklund, U., Stenevi, U., Carlsted, T. (1984). Fetal mesencephalic neurons survive and extend long axons across peripheral nervous system grafts inserted into the adult rat striatum. Neurosci. Lett. 45, 53–58.PubMedCrossRefGoogle Scholar
  3. Aguayo, A.J., Bray, G.M., Perkins, C.S., Duncan, I.D. (1979). Axon-sheath cell interactions in peripheral and central nervous system transplants. Soc. Neurosci. Symp. 4, 361–383.Google Scholar
  4. Aguayo, A.J., David, S., Richardson, P., Bray, G.M. (1982). Axonal elongation in peripheral and central nervous system transplants. In: Advances in Cellular Neurobiology. Federoff, S., Hertz, L. (eds). New York: Academic Press, pp. 215–234.Google Scholar
  5. Aguayo, A.J., Dickson, R., Trecarten, J., Attiwell, M., Bray, G.M., Richardson, P. (1978). Ensheathment and myelination of regenerating PNS fibres by transplanted optic nerve glia. Neurosci. Lett. 9, 97–104.PubMedCrossRefGoogle Scholar
  6. Allcutt, D., Berry, M., Sievers, J. (1984a). A quantitative comparison of the reaction of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Brain Res. 16, pp. 219–230.CrossRefGoogle Scholar
  7. Allcutt, D., Berry, M., Sievers, J. (1984b). A quantitative comparison of the reaction of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Brain Res. 16, pp. 231–240.CrossRefGoogle Scholar
  8. Benes, V. (1968). Spinal Cord Injury. London: Bailliere, Tindall and Cassell.Google Scholar
  9. Benfey, M., Aguayo, A.J. (1982). Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296, 150–152.PubMedCrossRefGoogle Scholar
  10. Berry, M. (1982). Post-injury myelin-breakdown products inhibit axonal growth: An hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Biblthca Anat. 23, 1–11.Google Scholar
  11. Berry, M. (1983). Regeneration of axons in the central nervous system. Prog. Anat. 3, 213–233.Google Scholar
  12. Berry, M. (1985). Regeneration and plasticity in the CNS. In: Scientific Basis of Clinical Neurology. Kennard, C., Swash, M. (eds.). Edinburgh: Churchill Livingston, pp. 658–679.Google Scholar
  13. Brown, J.O., McCouch, G.P. (1949). Abortive regeneration of the transected spinal cord. J. Comp. Neurol. 87, 131–137.CrossRefGoogle Scholar
  14. Chi, N.N., Bignami, A., Bich, N.T., Dahl, D. (1980). Autologous sciatic nerve grafts to the rat spinal cord: Immunofluorescence studies with neurofilament and gliofilament (GFA) antisera. Exp. Neurol. 69, 568–580.CrossRefGoogle Scholar
  15. Cowey, A., Perry, V.H. (1979). The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase. Exp. Brain Res. 35, 457–464.PubMedGoogle Scholar
  16. David, S., Aguayo, A.J. (1981). Axonal elongation into peripheral nervous system bridges after central nervous system injury in adult rats. Science 214, 931–933.PubMedCrossRefGoogle Scholar
  17. David, S., Aguayo, A.J. (1985). Axonal regeneration after crush injury of rat central nervous system fibres innervating nerve grafts. J. Neurocytol. 14, 1–12.PubMedCrossRefGoogle Scholar
  18. Feigin, I., Geller, E.H., Wolf, A. (1951). Absence of regeneration in the spinal cord of the young rat. J. Neuropath. Exp. Neurol. 10, 420–425.PubMedCrossRefGoogle Scholar
  19. Gamble, H.J. (1976). Spinal and cranial nerve roots. In: The Peripheral Nerve. Landon, D. (ed.). London: Chapman and Hall, p. 330.Google Scholar
  20. Goldberg, S., Frank, F. (1979). The guidance of optic axons in the developing and adult mouse retina. Anat. Rec. 193, 763–774.PubMedCrossRefGoogle Scholar
  21. Graftstein, B., Ingoglia, N.A. (1982). Intracranial transection of optic nerve in adult mice: Preliminary observations. Exp. Neurol. 76, 318–330.CrossRefGoogle Scholar
  22. Hughes, A. (1975). A quantitative analysis of the cat retinal ganglion cell topography. J. Comp. Neurol. 163, 107–128.PubMedCrossRefGoogle Scholar
  23. Hughes, A. (1977). The pigmented rat optic nerve: Fibre count and fibre diameter spectrum. J. Comp. Neurol. 176, 263–268.PubMedCrossRefGoogle Scholar
  24. Hughes, A., Wassle, H. (1976). The cat optic nerve: Fibre total count and diameter spectrum. J. Comp. Neurol. 169, 171–184.PubMedCrossRefGoogle Scholar
  25. Ide, C., Tohyama, K., Yokota, R., Nitatori, T., Onodera, S. (1976). Schwann cell basal lamina and nerve regeneration. Brain Res. 288, 61–75.CrossRefGoogle Scholar
  26. Kao, C.C. (1974). Comparison of healing process in transected spinal cords grafted with autogenous brain tissue, sciatic nerve and nodose ganglion. Exp. Neurol. 44, 424–439.PubMedCrossRefGoogle Scholar
  27. Kao, C.C., Chang, L.W., Bloodworth, J.M.B. (1977a). Electron microscopic observations of the mechanisms of terminal club formation in transected spinal cord axons. J. Neuropath. Exp. Neurol. 36, 140–156.PubMedCrossRefGoogle Scholar
  28. Kao, C.C., Chang, L.W., Bloodworth, J.M.B. (1977b). Axonal regeneration across transected mammalian spinal cord. An electron microscopic study of delayed microsurgical nerve grafting. Exp. Neurol. 54, 591–615.PubMedCrossRefGoogle Scholar
  29. Kao, C.C., Shimizer, Y., Perkins, L.C., Freeman, L.W. (1970). Experimental use of cultured cerebellar cortical tissue to inhibit the collagenous scar following spinal cord transection. J. Neurosurg. 33, 127–139.PubMedCrossRefGoogle Scholar
  30. Keynes, R.J., Hopkins, W.G., Huang, C.L.H. (1984). Regeneration of mouse peripheral nerves in degenerating skeletal muscle: Guidance by residual muscle fibre basement membrane. Brain Res. 295, 275–281.PubMedCrossRefGoogle Scholar
  31. Kiernan, J.A. (1971). Pituicytes and the regenerative properties of neurosecretory and other axons in the rat. J. Anat. 109, 97–114.PubMedGoogle Scholar
  32. Kiernan, J.A. (1981). Histological and Histochemical Methods: Theory and Practice. Oxford: Pergamon Press, pp. 272–273.Google Scholar
  33. Kimmel, D.L., Moyer, E.K. (1947). Dorsal roots following anastomosis of the central stump. J. Comp. Neurol. 87, 289–319.PubMedCrossRefGoogle Scholar
  34. Le Gros Clark, W.E. (1943). The problem of neuronal degeneration in central nervous system. II. The insertion of peripheral nerve stumps into the brain. J. Anat. 77, 251–259.PubMedGoogle Scholar
  35. Lugaro, E. (1906). Sulla presentarigenerazione autogena delle radici posteriori. Rev. Pat. Nerv. Men. 11, 337–340.Google Scholar
  36. McConnell, P., Berry, M. (1982). Regeneration of ganglion cell axons in the adult mouse retina. Brain Res. 241, 362–365.PubMedCrossRefGoogle Scholar
  37. McCouch, G.P. (1955). Comments on regeneration of functional connections. In: Re-generation in the Central Nervous System. Windle W.F. (ed.). Springfield, III.: Charles C. Thomas, pp. 171–175.Google Scholar
  38. Mesulam, M.M. (1982). Principles of horseradish peroxidase neurohistochemistry and their application for tracing neural pathways—axonal trasport, enzyme histochemistry and light microscopical analysis. In: Tracing Neural Connections with Horseradish Peroxidase. Mesulam, M.M. (ed). Chichester: John Wiley and Sons, pp. 1–152.Google Scholar
  39. Miller, N.M., Oberdorfer, M. (1981). Neuronal and neuroglial responses following reti-nal lesions in the neonatal rats. J. Comp. Neurol. 202, 493–504.PubMedCrossRefGoogle Scholar
  40. Misantone, L.J., Gershenbaum, M., Murray, M. (1984). Viability of ganglion cells after optic nerve crush in rats. J. Neurocytol. 13, 449–465.PubMedCrossRefGoogle Scholar
  41. Moyer, E.K., Kimmel, D.L., Winborn, L.W. (1953). Regeneration of sensory nerve roots in young and in senile rats. J. Comp. Neurol. 198, 283–308.CrossRefGoogle Scholar
  42. Nonidez, J.F. (1939) Studies on the innervation of the heart. I. Distribution of the cardiac nerves, with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am. J. Anat. 65, 361–413.CrossRefGoogle Scholar
  43. Paskind, H.A. (1936) Regeneration of posterior root fibres in cat. Arch. Neurol. Psychiat. 36, 1077–1084.Google Scholar
  44. Perkins, C.S., Carlstedt, T., Muzimo, K., Aguayo, A.J. (1980). Failure of regenerating dorsal root axons to regrow into the spinal cord. Can. J. Neurol. Sci. 7, 323.Google Scholar
  45. Perry, V.H. (1979) The ganglion cell layer of the retina of the rat: Golgi study. Proc. R. Soc. Lond. B. 204, 363–375.PubMedCrossRefGoogle Scholar
  46. Perry, V.H. (1981). Evidence for an amacrine cell system in the ganglion cell layer of the rat retina. Neuroscience 6 (5), 931–944.PubMedCrossRefGoogle Scholar
  47. Richardson, P.M., Aguayo, A.J., McGuinness, V.M. (1981). Role of sheath cells in axonal regeneration. In: Proceedings of the 10th Annual Symposium on Special Cord Reconstruction. Kao, C., Bunge, R.P., Reier, P. (eds.). New York: Raven Press, pp. 293–304.Google Scholar
  48. Richardson, P.M., Issa, V.M.K., Aguayo, A.J. (1984). Regeneration of long axons in the rat. J. Neurocytol. 13, 165–182.PubMedCrossRefGoogle Scholar
  49. Richardson, P.M., McGuinness, V.M., Aguayo, A.J. (1980). Axons from CNS neurones regenerate into PNS grafts. Nature 284, 264–265.PubMedCrossRefGoogle Scholar
  50. Sager, O., Marcovic, G. (1972). Regeneration in the central nervous system. Rev. Roumanian Neurol. 9, 23–29.Google Scholar
  51. Stensaas, L.J., Burgess, P.R., Horch, K.W. (1979). Regenerating dorsal root axons are blocked by spinal astrocytes. Soc. Neurosci. Abst. 5, 684.Google Scholar
  52. Stone, J. (1965). A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J. Comp. Neurol. 180, 753–772.CrossRefGoogle Scholar
  53. Stone, J. (1978). The number and distribution of ganglion cells in the cat2019s retina. J. Comp. Neurol. 180, 753–769.PubMedCrossRefGoogle Scholar
  54. Sugar, O., Gerard, R.W. (1940). Spinal cord regeneration in the rat. J. Neurophysiol. 3, 1–19.Google Scholar
  55. Ten Cate, J. (1932) Refunde nach der experimentellen Isoherung eines Ruckenmarksabschmittes. Arch. Neere Physiol de l’Homme et des Animaux 17, 149–238.Google Scholar
  56. Tiao, Y.C., Blakemore, C. (1976). Regional specialisation in the golden hamster’s retina. J. Comp. Neurol. 168, 439–458.PubMedCrossRefGoogle Scholar
  57. Tower, S.S. (1931). A search for trophic influences of posterior spinal roots on skeletal muscle, with a note on the nerve fibres found in the proximal stumps of the roots after excision of the root ganglion. Brain 54, 99–110.CrossRefGoogle Scholar
  58. Vaney, D.I., Hughes, A. (1976). The rabbit optic nerve: Fibre spectrum, fibre count and comparison with a retinal ganglion cell count. J. Comp. Neurol. 170, 241–252.PubMedCrossRefGoogle Scholar
  59. Weinberg, E.L., Spencer, P.S. (1979). Studies on the control of myelinogenesis. 3. Signalling of oligodendrocyte myelination by regenerating peripheral axons. Brain Res. 162, 273–279.PubMedCrossRefGoogle Scholar
  60. Westbrook, W.H.L., Tower, S.S. (1940). An analysis of the problem of emergent fibers in the posterior spinal root, dealing with the rate of growth of extraneous fibers into the roots after ganglionectomy. J. Comp. Neurol. 72, 383–397.CrossRefGoogle Scholar
  61. Williams, L.R., Powell, H.C., Lundborg, G., Varon, S. (1984). Competence of nerve tissue as distal insert promoting nerve regeneration in a silicone chamber. Brain Res. 293, 201–211.PubMedCrossRefGoogle Scholar
  62. Wise, G., Dollery, C., Henkinb P. (1971). The Retinal Circulation. New York: Harper and Row.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Martin Berry
    • 1
  • Lowell Rees
    • 1
  • Jobst Sievers
    • 2
  1. 1.Anatomy DepartmentGuy’s Hospital Medical SchoolLondonUK
  2. 2.Anatomy DepartmentUniversity of KielKielGermany

Personalised recommendations