Renewable Fuels and Materials

Oil From Plants
  • Melvin Calvin


Growing oil, one of the clearest examples of renewable fuel, means just that. Up until now, we have been mining oil, the ancient photosynthetic product of several hundred million years ago. The question now most frequently arising is about new sources of ancient photosynthetically produced materials, and there is no longer a tenable positive answer to this question. Other alternatives must be found.


Sugar Cane Renewable Fuel Mevalonic Acid Strip Mining Acetyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall, C. S., and Cleveland, C. J. (1981), Science 211, 576.PubMedCrossRefGoogle Scholar
  2. 2.
    Smagorinsky, J. (ed.) (1982), Carbon Dioxide and Climate: A Second Assessment, National Academy of Sciences, Washington, DC.Google Scholar
  3. 3a.
    Macdonald, G. J. (ed.) (1982), The Long-Term Impacts of Increasing Atmospheric Carbon Dioxide Levels, Ballinger, Cambridge, MA; and Carbon Dioxide and Climate: The Greenhouse Effect (1982), Hearing before the Subcommittee on Natural Resources, Agriculture Research, and Environment and Subcommittee on Investigations and Oversight of the Committee on Science and Technology of the U.S. House of Representatives, Washington, DC.Google Scholar
  4. 4.
    Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, C. (1981) Science 213, 957.PubMedCrossRefGoogle Scholar
  5. 5.
    Bryan, K., Komro, F. G., Manabe, S., and Spelman, M. J. (1982), Science 125, 57.Google Scholar
  6. 6.
    Kukla, G., and Gavin, J. (1981), Science 124, 497.CrossRefGoogle Scholar
  7. 7.
    Schlesinger, M. E., (1982), C02-Induced Climatic Warming: A Review of Model Research and Prospectus for First Detectability. Oregon State University, Climatic Research Institute, Corvallis, Report No. 36.Google Scholar
  8. 8.
    Calvin M. (1976), Photochem. Photobiol 23, 425; (1977), Energy Res. 1, 299; (1978), Chem. Eng. News 50(12), 30; and (1980), Die Naturwiss. 67, 525.Google Scholar
  9. 8a.
    Calvin, M. (1979), Bioscience 29, 533.CrossRefGoogle Scholar
  10. 8b.
    Calvin, M., Nemethy, E. K., Redenbaugh, K., and Otvos, J. W. (1982), Experientia 38, 18.CrossRefGoogle Scholar
  11. 8c.
    Calvin, M. (1981), Proc. 1st. Asian and Pacific Chemistry Congress, Singapore National Institute of Chemistry (1982), pp. 1 - 15.Google Scholar
  12. 8d.
    Calvin, M. (1983), Science 219, 24.PubMedCrossRefGoogle Scholar
  13. 8e.
    Nemethy, E. K. CRC Crit. Rev. Plant Sci. 2, 117.Google Scholar
  14. 9.
    Alexander, A. G., (1980), The Energy Cane Concept for Molasses and Boiler Fuel, Symp. on “Fuels and Feedstocks from Tropical Biomass”, San Juan, Puerto Rico.Google Scholar
  15. 10.
    McLaughlin, S. P., Kingsolver, B. E., and Hoffman, J. J., (1983), Econ. Bot. 37 150.CrossRefGoogle Scholar
  16. 11.
    Johnson, J. D., and Hinman, C. W. (1978), Science 208, 460.CrossRefGoogle Scholar
  17. 12.
    Coffey, S. D., and Halloran, G. M. (1981), Euphorbia: Perspective and Problems, Proc. Natl. Conf. on Fuels from Crops, Melbourne, Australia; and Stewart, G. A., Hawker, J. S., Nix, H. A., Rawlins, W. H. M., and Williams, L. R. ( 1982 ), The Potential for Hydrocarbon Fuels from Crops in Australia, CSIRO, Melbourne, Australia.Google Scholar
  18. 13.
    Kingsolver, B. E. (1982), Biomass 2, 281.CrossRefGoogle Scholar
  19. 14.
    Adams, R. P. (1982), Production of Liquid Fuels and Chemical Feedstocks from Milkweed, Institute of Gas Technology, Miami, FL.Google Scholar
  20. 15.
    Carruthers, I. B., Griffiths, D. J., Home, V. and Williams, L. R. (1984), Biomass, 4, 275.CrossRefGoogle Scholar
  21. 16.
    Nemethy, E. K., Otvos, J. W., and Calvin, M. (1979). J. Am. Oil Chem. Soc. 56, 957; (1981), Pure Appl. Chem. 53, 1101; and (1981), Natural Production of High Energy Liquid Fuels from Plants, in Fuels from Biomass, ( Klass, D. L., and Emert, G. H., eds.), Ann Arbor Science, Ann Arbor, MI, pp. 405 - 419.Google Scholar
  22. 17.
    Adams, R. P., and McChesney, J. D. (1983), Econ. Bot. 37, 207.CrossRefGoogle Scholar
  23. 18.
    Buchanan, R. A., Otey, F. H., Russell, C. R., and Cull, I. M. (1978), J. Am. Oil Chem. Soc. 55, 657.Google Scholar
  24. 19.
    Weisz, P. B., Haag, W. O., and Rodewald, P. G. (1979), Science 206, 57.Google Scholar
  25. 20.
    Wenninger, J. A., Yates, R. L., and Dolinsky, M. (1967), J. Am. Oil Chem. Soc. 50, 1304.Google Scholar
  26. 21.
    Noble, B. F. (1979), Canopy 4 (4), 6.Google Scholar
  27. 22.
    Nemethy, E. K., and Calvin, M. Phytochemistry (1982) 21, 298.Google Scholar
  28. 23.
    Redenbaugh, K., Ruzin, S., Bassham, J. A., and Bartholomew, J. C. (1982), Z. Pflanzenphysiol. 107, 65.Google Scholar
  29. 24.
    Redenbaugh, K. Plant Genetics, Inc., private communication.Google Scholar
  30. 25.
    Frick, G. A. (1938), Cactus and Succulent J. 10 (9), 60.Google Scholar
  31. 26.
    de Steinheil, P., (1941), Rev. Gen du Caoutchouc. 18 (2), 55.Google Scholar

Copyright information

© The Humana Press Inc. 1986

Authors and Affiliations

  • Melvin Calvin
    • 1
  1. 1.Department of Chemistry and Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations