Electrofusion of Cells

  • U. Zimmermann
Part of the Contemporary Biomedicine book series (CB, volume 7)

Abstract

Compared to conventional fusion techniques, electrofusion of cells appears to have great potential for membrane research and somatic hybridization (1–8).

Keywords

Permeability Vortex Migration Torque Platinum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karube, I., Tamiya E., and Matsouka H.: 1985. Transformation of Sac- charomyces cerevisiae spheroplasts by high electric pulse. FEBS Lett. 182: 90–94.CrossRefGoogle Scholar
  2. 2.
    Stopper H., Zimmermann U., and Wecker E.: 1985. High yields of DNA-transfer into mouse L-cells by electropermeabilization. Z. Natur- forsch. 402c: 133–139.Google Scholar
  3. 3.
    Langridge W. H. R., Li B. J., and Szalay A. A.: 1985. Electric field mediated DNA transformation in plant protoplastsBiotechnology in Plant Science: Relevance to Agriculture in the EightiesProgram and Abstracts for an International Symposium, June 23–27.Google Scholar
  4. 4.
    Karsten U., Papsdorf G., Roloff G., Stolley P., Abel H., Walther I., and Weiss H.: 1985. Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion. Cancer Clin. Oncol. 83: 733–740.CrossRefGoogle Scholar
  5. 5.
    Brown S. M., Ahkong G. F., Sage A. D., and Lucy J. A.: 1985. Electrically induced cell fusion in the production of monoclonal antibodies. Biochem. Soc. Trans. 14: 297–298.Google Scholar
  6. 6.
    Podesta E. J., Solano A. R., Vediat L. M., Paladini A., Sanchez M. L., and Torres H. N.: 1984. Steroid hormone and cyclic-AMP production in adrenal-Leydig-cell hybrids generated by electrofusion. Eur. J. Biochem. 145: 329–332.PubMedCrossRefGoogle Scholar
  7. 7.
    Orgambide G., Blangero C., and Teissie J.: 1985. Electrofusion of Chinese hamster ovary cells after ethanol incubation. Biochim. Biophys. Acta 820: 58–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Fikus M., Grzesiuk E., Marszalek P., Royzcki S., and Zielinski J.: 1985. Electrofusion of Neurospora crassa slime cells. FEBS Lett. 27: 123–127.Google Scholar
  9. 9.
    Okada Y., Ohno-Shosaku T., and Oiki S.: 1984. Calcium is prerequisite for cell fusion induced by electric pulses. Biomed. Res. 5: 511–566.Google Scholar
  10. 10.
    Ohno-Shosaku T. and Okada Y.: 1985. Electric pulse-induced fusion of mouse lymphoma cells: Roles of divalent cations and membrane lipid domains. J. Membrane Biol. 85: 269–280.CrossRefGoogle Scholar
  11. 11.
    Berg H.: 1982. Fusion of blastomeres and blastocytes of mouse embryos. Bioelectrochem. Bioenerg. 9: 223–228.CrossRefGoogle Scholar
  12. 12.
    Kubiak J. Z. and tarkowski A. K.: 1985. Electrofusion of mouse blastomeres. Exp. Cell. Res. 157: 561–566.PubMedCrossRefGoogle Scholar
  13. 13.
    Kohn H., Schieder R and Schieder O.: 1986. Somatic hybrids in tobacco mediated by electrofusion. Plant Sci. 38: 121–128.CrossRefGoogle Scholar
  14. 14.
    Bates G. W.: 1985. Electrical fusion for optimal formation of protoplast heterokaryons in Nicotiana. Planta 165: 217–224.CrossRefGoogle Scholar
  15. 15.
    Bates G. W. and Hasenkampf C. A.: 1985. Culture of plant somatic hybrids following electrical fusion. Theor. Appl. Genet. 70: 227–233.CrossRefGoogle Scholar
  16. 16.
    Zachrisson A. and Bornman C. H.: 1984. Application of electric field fusion in plant tissue culture. Physiol. Plant 61: 314–320.CrossRefGoogle Scholar
  17. 17.
    Gaff D. F., Ziegler H., and Zimmermann U.: 1985. Electrofusion of protoplasts from desiccation tolerant grass species with desiccation sensitive grass protoplasts. J. Plant Physiol. 120: 375–380.Google Scholar
  18. 18.
    Hampp R., Steingraber M., Mehrle W., and Zimmermann U.: 1985. Electric-field induced fusion of evacuolated mesophyll protoplasts of oat. Naturwissenschaften 72: 91–92.CrossRefGoogle Scholar
  19. 19.
    Salhani N., Vienken J., Zimmermann U., Ward M., Davey M. R., Clothier R. H., Balls M., Cocking E. C., and Lucy J. A.: 1985. Haemoglobic synthesis and cell wall regeneration by electric field induced interkingdom heterokaryons. Protoplasma 126: 30–35.CrossRefGoogle Scholar
  20. 20.
    Vienken J., Zimmermann U., Zenner H. P., Coakley W. T., and Gould R. K.: 1985. Electro-acoustic fusion of erythrocytes and of myeloma cells. Biochem. Biophys. Acta 820: 259–264.PubMedCrossRefGoogle Scholar
  21. 21.
    Zimmermann U.: 1983. Cellular drug-carrier systems and their possible targeting. In Targeted Drugs ( E. Goldberg, ed.) New York, John Wiley.Google Scholar
  22. 22.
    Knight D. E. and Baker P. F.: 1982. Calcium-dependence of catecholamine release from bovine adrenal medullary- cells after exposure to intense electric fields. J. Membrane Biol. 68: 107–140.CrossRefGoogle Scholar
  23. 23.
    Yaseen M. A., Pedley K. C., and Howell S. I..: 1982. Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge. Biochem. J. 206: 81–87.PubMedGoogle Scholar
  24. 24.
    Weber H., Forster W., Berg H. and Jacob H. E.: 1981. Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts. Curr. Genet. 4: 165–166.CrossRefGoogle Scholar
  25. 25.
    Teissie J., Knutson V. P., Tsong T. Y., and Lane M. D.: 1982. Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216: 537–538.PubMedCrossRefGoogle Scholar
  26. 26.
    Blangero C. and Teissie J.: 1983. Homokaryon production by electrofusion: A convenient way to produce a large number of viable mammalian fused cells. Biochem. Biophys. Res. Communications 114: 663–669.CrossRefGoogle Scholar
  27. 27.
    Lo M. M. S., Tsong T. Y., Conrad M. K., Strittmatter S. M, Hester L. D., and Snyder S. H.: 1984. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310: 792–794.PubMedCrossRefGoogle Scholar
  28. 28.
    Kramer I., Vienken K., Vienken J., and Zimmermann U.: 1984. Magneto-electro-fusion of human erythrocytes. Biochim. Biophys. Acta 772: 407–410.PubMedCrossRefGoogle Scholar
  29. 29.
    Parsegian V. A., Rand R. P., and Gingell D.: 1984. Lessons for the study of membrane fusion from membrane interactions in phospho- lipid systems, In Cell Fusion. London (Ciba Foundation Symposium 103), Pitman.Google Scholar
  30. 30.
    Glaser R.: 1976. Einfuhrung in die Biophysik. VEB. Verlag Jena, Gustav Fischer.Google Scholar
  31. 31.
    Feynman R. P.: 1971. The Feynman Lectures on Physics, vol. 2, London, Sydney. Manila, Addison-Wesley.Google Scholar
  32. 32.
    Muth E.: 1927. Uber die Erscheinung der Perlschnurketten von Emulsionspartikelchen unter Einwirkung eines Wechselfeldes. Kolloid Z. 41: 97–102.CrossRefGoogle Scholar
  33. 33.
    Liebesny P.: 1939. Athermic short wave therapv. Arch. Phys. Therap. 19: 736–738.Google Scholar
  34. 34.
    Schwarz G., Saito M., and Schwan H. P.: 1965. On the orientation on nonspherical particles in an alternating electrical field. J. Chem. Physics 43: 3562–3569.CrossRefGoogle Scholar
  35. 35.
    Schwan H. P. and Sher L. D.: 1969. Alternating-current field-induced forces and their biological implications. J. Electrochem. Soc. 116, 1: 22–26.CrossRefGoogle Scholar
  36. 36.
    Pohl H. A.: 1969. Dielectrophoresis. Cambridge, Cambridge University Press.Google Scholar
  37. 37.
    Buschl R., Ringsdorf H., and Zimmermann U.: 1982. Electric field- induced fusion of large liposomes from natural and polymerizable lipids. FEBS Lett. 150: 38–42.CrossRefGoogle Scholar
  38. 38.
    Pethig R.: 1979. Dielectric and electronic properties of biological materials. New York, John Wiley.Google Scholar
  39. 39.
    Zimmermann U. and Pilwat G.: 1978. The relevance of electric field induced changes in the membrane structure to basic membrane research and clinical therapeutics and diagnostics. In Abstract IV-19-(H) of the Sixth International Biophysics Congress, Kyoto, Japan.Google Scholar
  40. 40.
    Watts J. W. and King J. M.: 1984. A simple method for large-scale electrofusion and culture of plant protoplasts. Biosci. Rep. 4: 335–342.PubMedCrossRefGoogle Scholar
  41. 41.
    Vienken J. and Zimmermann U.: 1982. Electric field-induced fusion: Electro-hvdraulic procedure for production of heterokaryon cells in high yield. FEBS Lett. 137: 11–13.PubMedCrossRefGoogle Scholar
  42. 42.
    Pilwat G., Richter H. P., and Zimmermann U.: 1981. Giant culture cells by electric field-induced fusion. FEBS Lett. 133: 169–174.PubMedCrossRefGoogle Scholar
  43. 43.
    Holzapfel C, Vienken J., and Zimmermann U.: 1982. Rotation of cells in an alternating electric field: Theory and experimental proof. J. Membrane Biol. 67: 13–26.CrossRefGoogle Scholar
  44. 44.
    Zimmermann U., Pilwat G., and Pohl H. A.: 1982. Electric field- mediated cell fusion. J. Biol. Phys. 10: 43–50.CrossRefGoogle Scholar
  45. 45.
    Coster H. G. L. and Zimmermann U.: 1975. The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22: 73–90.CrossRefGoogle Scholar
  46. 46.
    Zimmermann U., Beckers F., and Steudle E.: 1976. Turgor sensing in plant cells by the electro-mechanical properties of the membrane. In: Transmembrane Ionic Exchanges in Plants. ( M. Thellier, A. Mon-nier, M. Demarty, and J. Dainty, eds.) CNRS Paris, No. 258.Google Scholar
  47. 47.
    Benz R., Beckers F., and Zimmermann U.: 1979. Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study. J. Membrane Biol. 48: 181–204.CrossRefGoogle Scholar
  48. 48.
    Zimmermann U. and Benz R.: 1980. Dependence of the electrical breakdow n voltage on the charging time in Valonia ut ricularis. J. Membrane Biol. 53: 33–43.CrossRefGoogle Scholar
  49. 49.
    Benz R. and Zimmermann U.: 1980. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim. Biophys. Acta 597: 637–642.PubMedCrossRefGoogle Scholar
  50. 50.
    Benz R. and Zimmermann U.: 1980. Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelec- trochem. Bioenerg. 7: 723–739.CrossRefGoogle Scholar
  51. 51.
    Vallee B. L. and Ulmer D. D.: 1972. Biochemical effects of mercury, cadmium, and lead. Ann. Rev. Biochem. 41: 91–128.PubMedCrossRefGoogle Scholar
  52. 52.
    Arnold VV. M., Wendt B., Zimmermann U., and Korenstein R.: 1985. Rotation of a single swollen thylakoid vesicle in a rotating electric field: Electrical properties of the photosynthetic membrane and their modification by ionophores, lipophilic ions and pi I. Biochim. Biophys. Acta 813: 117–131.CrossRefGoogle Scholar
  53. 53.
    Vienken J. and Zimmermann U.: 1985. An improved electrofusion technique for mouse hybridoma cells. FEBS Lett. 182: 278–280.PubMedCrossRefGoogle Scholar
  54. 54.
    Schnettler R. and Zimmermann U.: 1985. Influence of media com¬position on the yield of electrofused veast hybrids. FEMS Lett. 27: 195–198.CrossRefGoogle Scholar
  55. 55.
    Bischoff R., Eisert R. M., Schedel J., Vienken J., and Zimmermann U.: 1982. Human hybridoma cells produced by electro-fusion. FEBS Lett. 147: 64–68.PubMedCrossRefGoogle Scholar
  56. 56.
    Blangero C. and Teissie J.: 1984. Ionic control of mammalian cell elec-trofusion. 8th International Biophysics Congress, July/August 1984, Bristol.Google Scholar
  57. 57.
    Ohno-Shosaku T. and Okada Y: 1984. Facilitation of electrofusion of mouse lymphoma cells by the proteolytic action of proteases. Biochem. Biophys. Res. Commun. 120: 138–143.PubMedCrossRefGoogle Scholar
  58. 58.
    Zimmermann U., Vienken J., and Greyson J.: 1984. Electrofusion: A novel hybridization technique, In Biotech 84 Europe 1: 231–246.Google Scholar
  59. 59.
    Zimmermann U., Pilwat G., and Richter H. P.: 1981. Electric-field- stimulated fusion: Increased field stability of cell-induced by pro-nase. Naturwissenschaften 68: 577–578.PubMedCrossRefGoogle Scholar
  60. 60.
    Wolf H. and Urche D.: 1980. Biophysik-Praktikum, VEB. Verlag Jena, Gustav Fischer.Google Scholar
  61. 61.
    Donath E. and Gingell D.: 1983. A sharp cell surface conformational transition at low ionic strength changes the nature of the adhesion of enzyme-treated red blood cells to a hvdrocarbon interface. J. Cell Sci. 63: 113–124.PubMedGoogle Scholar
  62. 62.
    Dimitrov D. S.: 1984. Electric field-induced breakdown on lipid bilayers and cell membranes: A thin viscoelastic film mode. J. Membrane Biol. 78: 53–60.CrossRefGoogle Scholar
  63. 63.
    Dressler V., Schwister K., Haest C. W. M. and Deuticke B.: 1983. Dielectric breakdown of the erythrocyte membrane enhances trans bilayer mobility of phospholipids. Biochim. Biophys. Acta 732: 304.PubMedCrossRefGoogle Scholar
  64. 64.
    Schneeweiss F., Zimmermann U., and Saleemuddin M.: 1977. Preparation of uniform haemoglobin free human erythrocyte ghosts in isotonic solution. Biochim. Biophys. Acta 466: 373–378.PubMedCrossRefGoogle Scholar
  65. 65.
    Schnettler R., Zimmermann U., and Emeis C. C.: 1984. Large-scale production of yeast hybrids by electrofusion. FEMS Lett. 24: 81–85.CrossRefGoogle Scholar
  66. 66.
    Vienken J., Zimmermann U., Fouchard M., and Zagury D.: 1983. Electrofusion of myeloma cells on the single cell level: Fusion under sterile conditions without proteolytic enzyme treatment. FEBS Lett. 163: 54–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Bassett C. A. L. and Herrmann I.: 1968. The effect of electrostatic fields on macromolecular synthesis by fibroblasts in vitro. J. Cell. Biol. 39: 9.Google Scholar
  68. 68.
    Serpersu E. H. and Tsong T. Y.: 1983. Stimulation of a ouabain- sensitive Rb+ uptake in human erthrocytes with an external electric field. J. Membrane Biol. 191–201.Google Scholar
  69. 69.
    Korenstein R., Somjen D., Laub F., Fischler H.. and Binderman I.: 1983. Pulsed external electric fields are mitogens for bone cells, In Biological Structures and Coupled Flows (A. Oplatka and M. Balaban, eds.) New York, Academic Press, and Philadelphia, Balaban ISS.Google Scholar
  70. 70.
    Goodman R., Bassett C. A. L., and Henderson A. S.: 1983. Pulsing electromagnetic fields induce cellular transcription. Science 220: 1283–1285.PubMedCrossRefGoogle Scholar
  71. 71.
    Bawin S.M., Gavalas-Medici R. J., and Adey VV. R.: 1973. Effects of modulated verv high frequency fields on brain rhythms in cats. Brain Res. 58: 365–384.PubMedCrossRefGoogle Scholar
  72. 72.
    Zimmermann U., Buchner K. H., and Benz R.: 1982. Transport properties of mobile charges in algal membranes: Influence of pH and turgor pressure. J. Membrane Biol. 67: 183–197.CrossRefGoogle Scholar
  73. 73.
    Benz. R. and Zimmermann U.: 1983. Evidence for the presence of mobile charges in the cell membrane of Valonia utricularis. Biophys. J. 43: 13–26.PubMedCrossRefGoogle Scholar
  74. 74.
    Buchner K. H., Rosenheck K., and Zimmermann U.: 1985. Characterization of the mobile charges in the membrane of Valonia utricularis.. Membrane Biol. 88: 131–137.CrossRefGoogle Scholar
  75. 75.
    Bates G. W., Gaynor J. J., and Shekhawat N. S.: 1983. Fusion of plant protoplasts by electric fields. Plant Physiol. 72: 1110–1113.PubMedCrossRefGoogle Scholar
  76. 76.
    Koop H. U., Dirk J., Wolff D., and Schweiger H. G.: 1983. Somatic hvbridization of two selected single cells. Cell Biol. Int. Rep. 7:1123– 1128.PubMedCrossRefGoogle Scholar
  77. 77.
    Koop H. U.: 1984. Entwicklung elektrisch fusioniert er Protoplasten in individueller Kultur. Mitteilung Botanikertagung Wien 77.Google Scholar
  78. 78.
    Tempelaar M. J. and Jones M. G. K.: 1985. Fusion characteristics of plant protoplasts in electric fields. Planta 165: 205–216.CrossRefGoogle Scholar
  79. 79.
    Jacob H.-E., Siegemund F., and Bauer E.: 1984. Fusion von pflanz-lichen Protoplasten durch elektrischen Feldimpuls nach Dielek- trophorese. Biol. Zbl. 103: 77–82.Google Scholar
  80. 80.
    Koop H. U., Weber G., and Schweiger H. G.: 1983. Individual culture of selected single cells and protoplasts of higher plants in microdroplets of defined media. Z. Pflanzenphysiol. 112: 21–34.Google Scholar
  81. 81.
    Richter H.-P., Scheurich P., and Zimmermann U.: 1981. Electric field- induced fusion of sea urchin eggs. Develop. Growth Differ. 23: 479– 486.CrossRefGoogle Scholar
  82. 82.
    Zimmermann U, Vienken J., and Pilwat G.: 1981. Rotation of cells in an alternating electric field: The occurence of a resonance frequency. Z. Naturforsch. 36c: 173–177.Google Scholar
  83. 83.
    Arnold VV. M. and Zimmermann U.: 1982. Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa. Z. Naturforsch. 37c: 908–915.Google Scholar
  84. 84.
    Zimmermann U. and Arnold W. M.: 1983. The interpretation and use of the rotating biological cells, In Coherent Excitations in Biological Systems. ( H. Frohlich and F. Kremer, eds.) Berlin/Heidelberg, Springer-Verlag.Google Scholar
  85. 85.
    Kuppers G., Wendt B., and Zimmermann U.: 1983. Rotation of cells and ion exchange beads in the MHz-frequencv range. Z. Naturforsch. 38c: 505–507.Google Scholar
  86. 86.
    Pilwat G. and Zimmermann U.: 1983. Rotation of a single cell in a discontinuous rotating electric field. Bioelectrochem. Bioenerg. 10: 155–162.CrossRefGoogle Scholar
  87. 87.
    Arnold W. M. and Zimmermann U.: 1983. German patent application, official designation P 3325 843.0, recorded July 18.Google Scholar
  88. 88.
    Arnold VV. M. and Zimmermann U.: 1983. Electric field-induced fusion and rotation of cells. In Biological Membranes, vol. 5 (D. Chapman, ed.) London, Academic.Google Scholar
  89. 89.
    Jeltsch E. and Zimmermann U.: 1979. Particles in a homogeneous electrical field: A model for the electrical breakdown of living cells in a coulter counter. Bioelectrochem. Bioenerg. 6: 349–384.CrossRefGoogle Scholar
  90. 90.
    Mehrle VV., Zimmermann U., and Hampp R.: 1985. Evidence for asymmetrical uptake of fluorescent dyes through electro- permeabilized membranes of Avena mesophyll protoplasts. FEBS Lett. 185: 89–94.CrossRefGoogle Scholar
  91. 90A.
    Zimmermann U. and Stopper H.: 1985. Elektrofusion und Elektro- permeabilisierung von Zellen. Pharmatechnol. Biotechnol. III: 26 - 36.Google Scholar
  92. 91.
    Zimmermann U., Schulz J., and Pilwat G.: 1973. Transcellular ion flow in Escherichia coliB and electrical sizing of bacteria. Biophys. J 13:1005–1013PubMedCrossRefGoogle Scholar
  93. 92.
    Scheurich P. and Zimmermann U.: 1981. Giant human erythrocytes by electric-field-induced cell-to-cell fusion. Naturwissenschaften 68: 45–46.PubMedCrossRefGoogle Scholar
  94. 93.
    Sowers A. E.: 1983. Fusion of mitochondrial inner membranes by electric fields produces inside-out vesicles: visualization by freeze- fracture electron microscopy. Biochim. Biophys. Acta 735: 426–428.PubMedCrossRefGoogle Scholar
  95. 94.
    Zimmermann U. and Kuppers G.: 1983. Cell fusion by electromagnetic waves and its possible relevances for evolution. Naturwissenschaften 70: 568–569.PubMedCrossRefGoogle Scholar
  96. 95.
    Kuppers G. and Zimmermann U.: 1983. Cell fusion by spark discharge and its relevance for evolutionary- processes. FEBS lett. 164: 323–329.CrossRefGoogle Scholar
  97. 96.
    Broda H. G. and Zimmermann U.: Production of viable yeast hybrids by electrical discharge: The role of electrofusion during evolution (in preparation).Google Scholar
  98. 97.
    Kuppers G., Diederich K. J., and Zimmermann U.: 1984. Cell fusion by simulated atmospheric discharges: Further support for the hypothesis of involvement of electrofusion in evolution. Z. Natur- forsch. 39c: 973–980.Google Scholar
  99. 98.
    Lockner D. A., Johnston M. J. S and Byerlee J. D.: 1983. A mechanism to explain the generation of earthquake lights. Nature 302: 28–33.CrossRefGoogle Scholar
  100. 99.
    Finkelstein D. and Powell J.: 1970. Earthquake lightning. Nature 228: 759–760.PubMedCrossRefGoogle Scholar
  101. 100.
    Lodge J. P., Baker M. L., and Pierrard J. M.: 1956. Observations on ion separation in dilute solutions by freezing. J. Chem. Phys. 24: 716–719.CrossRefGoogle Scholar
  102. 101.
    Hui S. W., Stewart T. P., and Boni L. T.: 1981. Membrane fusion through point defects in bilayers. Science 212: 921–922.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • U. Zimmermann

There are no affiliations available

Personalised recommendations