cDNA Encoding Precursors of the Bee-Venom Peptides Melittin and Secapin

  • R. Vlasak
  • I. Malec
  • G. Kreil
Part of the Molecular Biology and Biophysics book series (MBB)

Abstract

The venom gland of honeybees is a Y-shaped, tubular structure that contains highly polyploid cells. The secretion produced by the gland cells is collected in a central duct and stored in the venom sac. Whereas the large venom gland of queen bees operates at maximal capacity in newly emerged animals, venom production in worker bees starts slowly after emergence and then increases gradually over a period of about 2 wk (1). Worker bee venom is available in large quantities and its constituents have been studied in great detail (2,3,). In addition to small amounts of biogenic amines, the enzymes and peptides listed in Table 1 have been isolated from this venom. Even though worker and queen bees are genetically identical, their venoms differ markedly. Phospholipase A2, which is barely detectable in queen bee venom (4), is one of the differences noted (5). However, in both cases, melittin is the main venom constituent. This peptide was discovered through it lytic action on cells and liposomes. The primary structure of melittin, which is composed of 26 amino acids, was established by Habermann and Jentsch (6). The interaction of this peptide with natural and artificial phospholipid bilayers was studied extensively by various biophysical and biochemical methods (see ref. 7 for a brief summary), and the crystal structure of the melittin tetramer was elucidated (8).

Keywords

Codon Amide Carboxyl Polypeptide Arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmayer H., Kreil G., and Suchanek G. (1972) Synthesis of promelittin and melittin in the venom gland of queen and worker bees patterns observed during maturation, J. Insect Physiol. 18, 1515–1521.CrossRefGoogle Scholar
  2. 2.
    Habermann E. (1972) Bee and wasp venoms. Science 177, 314–318.PubMedCrossRefGoogle Scholar
  3. 3.
    Gauldie J., Hanson J. M., Rumjanek F. D., Shipolini R. A., and Vernon C. A. (1976) The peptide components of bee venom. Eur. J. Biochem. 61, 369–376.PubMedCrossRefGoogle Scholar
  4. 4.
    Marz R., Mollay C, Kreil G., and Zeiger J. (1981) Queen bee Apis mellifera venom contains much less phospholipase than worker-bee venom. Insect Biochem. 11, 685–690.CrossRefGoogle Scholar
  5. 5.
    Owen M. D. (1979) Relation between age and Hyaluronidase activity in the venom of queen and worker honey bees (Apis mellifera L). Toxicon 17, 94–98.PubMedCrossRefGoogle Scholar
  6. 6.
    Habermann E. and Jentsch J. (1967) Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstucken. Hoppe Seiflers Z. Physiol. Chent. 348, 37–50.CrossRefGoogle Scholar
  7. 7.
    Posch M., Rakusch U., Mollay C., and Laggner P. (1983) Cooperative effects in the interaction between melittin and phosphatidylcholine model membranes: Studies by temperature scanning and densitometry. J. Biol. Chem. 258, 1761–1766.PubMedGoogle Scholar
  8. 8.
    Terwilliger T. C. and Eisenberg D. (1982) The structure of melittin. II. Interpretation of the structure. J. Biol. Chem. 257, 6016–6022.PubMedGoogle Scholar
  9. 9.
    Shipolini R. A., Callewaert G. L., Cottrell R. C, and Vernon C. A. (1971) The primary sequence of phosphoIipase-A from bee venom. FEBS Lett. 17, 39–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Gauldie J., Hanson J. M., Shipolini R. A., and Vernon C. A. (1978) The structures of some peptides from bee venom. Eur. J. Biochem. 83, 405–410.PubMedCrossRefGoogle Scholar
  11. 11.
    Suchanek G., Kreil G., and Hermodson M. A. (1978) Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc. Natl. Acad. Sci. USA 75, 701–704.PubMedCrossRefGoogle Scholar
  12. 12.
    Suchanek G. and Kreil G. (1977) Translation of melittin messenger RNA in vitro yields a product terminating with glutaminylglycine rather than with glutaminamide. Proc. Natl. Acad. Sci. USA 74, 975–978.PubMedCrossRefGoogle Scholar
  13. 13.
    Mollay C., Vilas U., and Kreil G. (1982) Cleavage of honeybee prepromelittin by an endoprotease from rat liver microsomes: Identification of intact signal peptide. Proc. Natl. Acad. Sci. USA 79, 2260–2263.PubMedCrossRefGoogle Scholar
  14. 14.
    Mollay C., Vilas U., and Wickner W. (1983) Unpublished experiments.Google Scholar
  15. 15.
    Kreil G., Haiml L., and Suchanek G. (1980) Stepwise cleavage of the pro part of promelittin by dipepidyl peptidase IV: Evidence for a new type of precursor-product conversion. Eur. J. Biochem. 111, 49–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Vlasak R., Unger-Ullmann C., Kreil G., and Frischauf A-M. (1983) Nucleotide sequence of cloned cDNA coding for honeybee prepromelittin. Eur. J. Biochem. 135, 123–126.PubMedCrossRefGoogle Scholar
  17. 17.
    Vlasak R. and Kreil G. (1984) Eur. J. Biochem. 145, 279–282.PubMedCrossRefGoogle Scholar
  18. 18.
    Lagace L., Chandra T., Woo S. L. C., and Means A. R. (1983) Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA. J. Biol. Chem. 258, 1684–1688.PubMedGoogle Scholar
  19. 19.
    Parnes J. R., Robinson R. R., and Seidman J. G. (1983) Multiple mRNA species with distinct 3′ termini are transcribed from the β2-microglobulin gene. Nature, 302, 449–452.PubMedCrossRefGoogle Scholar
  20. 20.
    von Heijne G. (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133, 17–21.CrossRefGoogle Scholar
  21. 21.
    Kudelin A. B., Martynov V. I., Kudelina I. A., and Miroshnikov A. I. (1978) Abstr., 15th Eur. Pept. Symp. Gdansk.Google Scholar
  22. 22.
    Lui L. K. and Vernon C. A. (1984) J. Chem. Res. S. 10–11.Google Scholar
  23. 23.
    Goodman R. H., Jacobs J. W., Dee P. C., and Habener J. F. (1982) Somatostatin-28 encoded in a cloned cDNA obtained from a rat medullary thyroid carcinoma. J. Biol. Chem. 257, 1156–1159.PubMedGoogle Scholar
  24. 24.
    Land H., Schütz G., Schmale H., and Richter D. (1982) Nucleotide sequence of cloned cDNA encoding bovine argininc vasopressin- neurophysin II precursor. Nature 295, 299–303.PubMedCrossRefGoogle Scholar
  25. 25.
    Itoh N., Obata K., Yanaihara N., and Okamoto H. (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304, 547–550.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • R. Vlasak
  • I. Malec
  • G. Kreil

There are no affiliations available

Personalised recommendations