Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 70))

  • 564 Accesses

Abstract

In number theory, one often encounters sums of the form

Where D is a bounded domain in R k and e(w) =e2πiw. We shall Refer to the case k = 1 as the one-dimensional case, k = 2 as the two- dimensional case, etc. Our objective here is to give an exposition of van der Corput’s method for estimating the sums in (1). The one- dimensional case is well understood. Our knowledge of the two-dimensional case is fragmentary, and dimensions higher than two are terra incognita We shall review the one-dimensional case in Section 2. In Section 3 we will give an outline of what is known and what is conjectured about the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. V. Atkinson, The mean value of the Riemann zeta-function, Acta. Math. 81 (1949), 353–376.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen Jing-Run, The lattice points in a circle, Sci. Sinica 12 (1963),633–649.

    MathSciNet  Google Scholar 

  3. S. W. Graham, The distribution of squarefree numbers, J. London Math. Soc. (2) 24 (1981), 54–64.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Haneke, Verscharfung der Abschätzung von ζ(1/2 + it), Acta Arith. 8 (1963), 357–430.

    MathSciNet  MATH  Google Scholar 

  5. D. R. Heath-Brown, The Pjateckii-Sapiro prime number theorem, J. No. Theory 16 (1963), 242–266.

    Article  MathSciNet  Google Scholar 

  6. F. Herzog and G. Piranian, Sets of convergence of Taylor Series I, Duke Math. Jnl. 16 (1949) 529–534.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. K. Hua, The lattice points in a circle, Quke. J. Math. (Oxford) 12 (1941), 193–200.

    Article  Google Scholar 

  8. G. Kolesnik, Improvement of remainder term for the divisors problem,Math. Zametki 6 (1969), 545–554.

    MathSciNet  MATH  Google Scholar 

  9. ———, On the estimation of multiple exponential sums, Recent Progress in Analytic Number Theory, Vol. 1 (eds. H. Halberstam and C. Hooley, Academic Press, New York, 1981) 247–256.

    Google Scholar 

  10. ———, On the number of abelian groups of a given order J. Reine Angew. Math. 329 (1981), 164–175.

    MathSciNet  MATH  Google Scholar 

  11. ———, On the order of ζ(1/2 + it) and Δ(R), Pac. Jnl. of Math., 98 (1982) 107–122.

    MathSciNet  MATH  Google Scholar 

  12. S. H. Min, On the order of ζ(1/2 + it), Trans. Amer. Math. Soc. 65 (1949) 448–472.

    MathSciNet  MATH  Google Scholar 

  13. E. Phillips, The zeta-function of Riemann; further developments of van der Corput’s method, Quart. J. Math. (Oxford) 4 (1933) 209–225.

    Article  Google Scholar 

  14. R. A. Rankin, Van der Corput’s method and the theory of exponent pairs, Quart. J. Math. Oxford (2), 6 (1955) 147–153.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. E. Richert, Verschrfüng der Abschatzüng beim Dirichletsehen Teilerproblem, Math. Z. 58 (1953) 204–218.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. G. Schmidt, Zur Anzahl Abelscher Gruppen gegebner Ordnung I, Acta Anith. 13 (1968) 405–417.

    MATH  Google Scholar 

  17. B. R. Srinivasan, The lattice point problem in many dimensional hyperboloids, III, Math. Ann. 160 (1965) 280–311.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. C. Titchmarsh, The lattice points in a circle, Proc. London Math. Soc. (2) 38 (1934) 96–155; see also “Corrigendum”, op. cit. 55 (1935).

    Article  Google Scholar 

  19. ———, On the order of ζ(l/2 + it), Quart. J. Math. (Oxford) 13 (1942) 11–17.

    Article  MathSciNet  Google Scholar 

  20. ———, The theory of the Riemann-zeta function, Clarendon Press, Oxford 1951.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Boston

About this chapter

Cite this chapter

Graham, S.W., Kolesnik, G. (1987). One and Two Dimensional Exponential Sums. In: Adolphson, A.C., Conrey, J.B., Ghosh, A., Yager, R.I. (eds) Analytic Number Theory and Diophantine Problems. Progress in Mathematics, vol 70. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4816-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4816-3_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-9173-2

  • Online ISBN: 978-1-4612-4816-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics