Reinstatement of Drug-Taking Behavior as a Method of Assessing Incentive Motivational Properties of Drugs

  • Jane Stewart
  • Harriet de Wit

Abstract

Noncontingent “priming” presentations of positive reinforcers (or incentive events) can enhance and reinstate previously acquired instrumental responding for these reinforcers. We describe how this phenomenon may be used to study the motivational control of drug-taking behavior and the relapse to drug-taking in drug-free individuals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, K., & Yanagita, T. (1978). The discriminative stimulus properties of intravenously administered cocaine in rhesus monkeys. In R. C. Colpaert & S. A. Rosecrans (Eds.), Stimulus properties of drugs: Ten years of progress (pp. 125–136). Amsterdam: Elsevier/North Holland.Google Scholar
  2. Beach, H. D. (1975). Morphine addiction in rats. Canadian Journal of Psychology, 11, 104–112.CrossRefGoogle Scholar
  3. Bindra, D. (1969). The interrelated mechanisms of reinforcement and motivation and the nature of their influence on response. In W. J. Arnold & D. Levine (Eds.), Nebraska symposium on motivation (pp. 1–33). Lincoln: University of Nebraska Press.Google Scholar
  4. Bindra, D., & Campbell, J. F. (1967). Motivational effects of rewarding intracranial stimulation. Nature, 215, 375–376.PubMedCrossRefGoogle Scholar
  5. Bindra, D., & Palfai, T. (1967). Nature of positive and negative incentive-motivational effects of general activity. Journal of Comparative and Physiological Psychology, 63, 288–297.PubMedCrossRefGoogle Scholar
  6. Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79, 394–409.CrossRefGoogle Scholar
  7. Bozarth, M. A., & Wise, R. A. (1981a). Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sciences, 28, 551–555.PubMedCrossRefGoogle Scholar
  8. Bozarth, M. A., & Wise, R. A. (1981b). Localization of the reward-relevant opiate receptors. In L. S. Harris (Ed.), Problems of Drug Dependence 1981 (National Institute on Drug Abuse Research Monograph 41, pp. 158–164). Washington, DC: U.S. Government Printing Office.Google Scholar
  9. Brown, Z. W., Amit, Z., & Weeks, J. R. (1976). Simple flow-thru swivel for infusions into unrestrained animals. Pharmacology Biochemistry & Behavior, 5, 363–365.CrossRefGoogle Scholar
  10. Colpaert, F. C., Niemegeers, C. J. E., & Janssen, P. A. J. (1979). Discriminative stimulus properties of cocaine: Neuropharmacological characteristics as derived from stimulus generalization experiments. Pharmacology Biochemistry & Behavior, 10, 535–546.CrossRefGoogle Scholar
  11. Creese, I., & Iversen, S. D. (1975). The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Research, 83, 419–436.PubMedCrossRefGoogle Scholar
  12. Davis, W. M., & Smith, S. G. (1976). Role of conditioned reinforcers in the initiation maintenance and extinction of drug-seeking behavior. Pavlovian Journal of Biological Sciences, 11, 222–236.Google Scholar
  13. Deluty, M. Z. (1976). Excitatory and inhibitory effects of free reinforcers. Animal Learning and Behavior, 4, 436–440.CrossRefGoogle Scholar
  14. Deneau, G., Yanagita, T., & Seevers, M. H. (1969). Self-administration of psychoactive substances by the monkey. Psychopharmacologia, 16, 30–48.PubMedCrossRefGoogle Scholar
  15. Deutsch, J. A. (1960). The Structural Basis of Behavior. Chicago: University of Chicago Press.Google Scholar
  16. de Wit, H., & Stewart, J. (1981). Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology, 75, 134–143.PubMedCrossRefGoogle Scholar
  17. de Wit, H., & Stewart, J. (1983). Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmaco1ogy, 79, 29–31.CrossRefGoogle Scholar
  18. de Wit, H., & Wise, R. A. (1977). Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Canadian Journal of Psychology, 31, 195–203.PubMedCrossRefGoogle Scholar
  19. Eiserer, L. A. (1978). Effects of food primes on the operant behavior of nondeprived rats. Animal Learning and Behavior, 6, 308–312.CrossRefGoogle Scholar
  20. Eiserer, L. A., & Hoffman, H. S. (1973). Priming of ducklings1 responses by- presenting an imprinted stimulus. Journal of Comparative and Physiological Psychology, 82, 345–359.PubMedCrossRefGoogle Scholar
  21. Eiserer, L. A., & Ramsay, D. S. (1981). Priming of darkness-rewarded runway responses in the American cockroach (periplaneta americana). Journal of General Psychology, 104, 213–221.CrossRefGoogle Scholar
  22. Gallistel, C. R. (1973). Self-stimulation: The neurophysiology of reward and motivation. In J. A. Deutsch (Ed.), The physiological basis of memory (pp. 175–267). New York: Academic Press.Google Scholar
  23. Gerber, G. J., & Stretch, R. (1975). Drug-induced reinstatement of extinguished self-administration behavior in monkeys. Pharmacology Biochemistry & Behavior, 175, 1055–1061.CrossRefGoogle Scholar
  24. Glickman, S. E., & Schiff, B. B. (1967). A biological theory of reinforcement. Psychological Review, 74, 81–109.PubMedCrossRefGoogle Scholar
  25. Gysling, K., & Wang, R. (1982). Morphine facilitates the activity of dopaminergic neurons in the rat ventral tegmental area. Society for Neuroscience Abstracts, 8, 777.Google Scholar
  26. Gysling, K., & Wang, R. (1983). Morphine-induces activation of A1 0 dopamine neurons in the rat. Brain Research, 277, 119–127.PubMedCrossRefGoogle Scholar
  27. Hawkins, R. D., Roll, P. L., Puerto, A., & Yeomans, J. S. (1983). Refractory periods of neurons mediating stimulation-elicited eating and brain stimulation reward: Interval scale measurement and tests of a model of neural integration. Behavioral Neuroscience, 97, 416–432.PubMedCrossRefGoogle Scholar
  28. Hodgson, R., Rankin, H., & Stockwell, T. (1979). Alcohol dependence and the priming effect. Behavioral Research and Therapy, 27, 379–387.CrossRefGoogle Scholar
  29. Hogan, J. A., & Bols, R. J. (1980). Priming of aggressive motivation in betta splendens. Animal Behaviour, 28, 135–142.CrossRefGoogle Scholar
  30. Joyce, E. M., & Iversen, S. D. (1979). The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neuroscience Letters, 14, 207–212.PubMedCrossRefGoogle Scholar
  31. Katz, R. J., & Gormezano, G. (1978). A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacology Biochemistry & Behavior, 11, 231–233.CrossRefGoogle Scholar
  32. Killeen, P. R. (1975). On the temporal control of behavior. Psychological Review, 82, 89–115.CrossRefGoogle Scholar
  33. Killeen, P. R. (1982). Incentive theory. In D. J. Bernstein (Ed.), Nebraska symposium on motivation, 1981: Response structure and organization (pp. 169–216). Lincoln: University of Nebraska Press.Google Scholar
  34. Konorski, J. (1967). Integrative activity of the brain. Chicago: University of Chicago Press.Google Scholar
  35. Lyness, W. H., Friedle, N. M., & Moore, K. E. (1979). Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on d-amphetamine self-administration. Pharmacology Biochemistry & Behavior, 11, 553–556.CrossRefGoogle Scholar
  36. Lyness, W. H., Friedle, N. M., & Moore, K. E. (1 980). Increased self-administration of d-amphetamine after destruction of 5-hydroxytryptamine neurons. Pharmacology Biochemistry & Behavior, 12, 937–941.Google Scholar
  37. Matthews, R. T., & German, D. C. (1982). Electrophysiological evidence for morphine excitation of ventral tegmental area dopamine neurons. Society for Neuroscience Abstracts, 8, 777.Google Scholar
  38. Meyer, R. E., & Mirin, S. M. (1979). The heroin stimulus. New York: Plenum Press.Google Scholar
  39. Monaco, A. P., Hernandez, L., & Hoebel, B. G. (1981). Nucleus accumbens: Site of amphetamine self-injection; comparison with the lateral ventricle. In R. B. Chronister, & J. F. DeFrance (Eds.), The neurobiology of the nucleus accumbens (pp. 338–342). Brunswick, ME: Haer Institute.Google Scholar
  40. Overton, D. A. (1971). Discriminative control of behavior by drug states. In T. Thompson, & R. Pickens (Eds.), Stimulus properties of drugs (pp. 87–100). New York: Appleton-Century-Crofts.Google Scholar
  41. Panksepp, J., & Trowill, J. A. (1967). Intra-oral self-injection: The simulation of self-stimulation phenomena with conventional reward. Psychonomic Science, 9, 405–408.Google Scholar
  42. Pavlov, I. P. (1957). Lectures on the work of the principal digestive glands. Lecture one (1919). In I. P. Pavlov, Experimental psychology and other essays. New York: Philosophical Library.Google Scholar
  43. Phillips, A. G., & LePiane, F. G. (1980). Reinforcing effects of morphine microinjections into the ventral tegmental area. Pharmacology Biochemistry & Behavior, 12, 965–968.CrossRefGoogle Scholar
  44. Pickens, R., & Harris, W. C. (1968). Self-administration of d-amphetamine by rats. Psychopharmaco1ogy, 12, 158–163.CrossRefGoogle Scholar
  45. Reicher, M. A., & Holman, E. W. (1977). Location preference and flavor aversion reinforced by amphetamine in rats. Animal Learning and Behavior, 5, 343–346.CrossRefGoogle Scholar
  46. Reid, R. L. (1958). The role of the reinforcer as stimulus. British Journal of Psychology, 49, 202–209.PubMedCrossRefGoogle Scholar
  47. Roberts, D. C. S., Koob, G. F., Klonoff, P., & Fibiger, H. C. (1980). Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacology Biochemistry & Behavior, 12, 781–787.CrossRefGoogle Scholar
  48. Rossi, N. A., & Reid, L. D. (1976). Affective states associated with morphine injections. Physiological Psychology, 4, 269–274.Google Scholar
  49. Schuster, C. R., & Woods, J. H. (1968). The conditioned reinforcing effects of stimuli associated with morphine reinforcement. The International Journal of the Addictions, 3, 223–230.Google Scholar
  50. Sheffield, F. D., & Campbell, B. A. (1954). The role of experience in the “spontaneous” activity of hungry rats. Journal of Comparative and Physiological Psychology, 47, 97–100.PubMedCrossRefGoogle Scholar
  51. Sherman, J. E., Pickman, C., Rice, A., Liebeskind, J. C., & Holman, E. W. (1980). Rewarding and aversive effects of morphine: Temporal and pharmacological properties. Pharmacology Biochemistry & Behavior, 13, 501–505.CrossRefGoogle Scholar
  52. Shettleworth, S. J. (1978). Reinforcement and the organization of behavior in golden hamsters: Sunflower seed and nest paper reinforcers. Animal Learning and Behavior, 6, 352–362.CrossRefGoogle Scholar
  53. Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.Google Scholar
  54. Stewart, J. (1962). Differential responses based on the physiological consequences of pharmacological agents. Psychopharmaco1ogia, 3, 132–138.CrossRefGoogle Scholar
  55. Stewart, J. (1982). Reinstatement of heroin-reinforced responding in the rat by central implants of morphine in the ventral tegmental area. Society for Neuroscience Abstracts, 8, 589.Google Scholar
  56. Stewart, J. (1984). Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacology Biochemistry & Behavior, 20, 917–923.CrossRefGoogle Scholar
  57. Stewart, J., de Wit, H., & Eikelboom, R. (1984). The role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91, 251–268.PubMedCrossRefGoogle Scholar
  58. Stretch, R., & Gerber, G. J. (1973). Drug-induced reinstatement of amphetamine self-administration behavior in monkeys. Canadian Journal of Psychology, 27, 168–177.PubMedCrossRefGoogle Scholar
  59. Thompson, T., & Pickens, R. (Eds.). (1971). Stimulus properties of drugs. New York: Appleton-Century-Crofts.Google Scholar
  60. van der Kooy, D., & Hogan, J. A. (1978). Priming effects with food and water reinforcers in hamsters. Learning and Motivation, 9, 332–346CrossRefGoogle Scholar
  61. van der Kooy, D., Mucha, R. F., O’Shaughnessy, M., & Bucenieks, P. (1982). Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Research, 243, 107–117.PubMedCrossRefGoogle Scholar
  62. Vezina, P., & Stewart, J. (1983). The conditioning of changes in locomotor activity induced by morphine applied to the ventral tegmental area of the rat brain. Society for Neuroscience Abstracts, 9, 275.Google Scholar
  63. Vezina, P., & Stewart, J. (1984). Conditioning and place-specific sensitization of increases in activity induced by morphine in the VTA. Pharmacology Biochemistry & Behavior, 20, 925–934.CrossRefGoogle Scholar
  64. White, N., Sklar, L., & Amit, Z. (1977). The reinforcing action of morphine and its paradoxical side effect. Psychopharmacology, 52, 63–66.PubMedCrossRefGoogle Scholar
  65. Yokel, R. A., & Wise, R. A. (1976). Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacologia, 48, 311–318.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Jane Stewart
    • 1
  • Harriet de Wit
    • 2
  1. 1.Center for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontrealCanada
  2. 2.Department of PsychiatryUniversity of ChicagoChicagoUSA

Personalised recommendations