Skip to main content

Excitonic Ion and Auger Photoemission in Organic Crystals

  • Chapter
Protein Structure

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 113 Accesses

Abstract

When an insulator is subjected to ionizing radiation of high intensity, relatively large concentrations of mobile excited states such as excitons and electrons (holes) can coexist. The possibility of creating a bound state (excitonic ion) between the electron (or hole) and an exciton was first suggested by Lampert [1], and several theoretical papers have since appeared that have discussed the question of the stability of such a state consisting of a free electron (or hole) and an exciton of either the Frenkel type or Wannier type [2–7]. The Frenkel exciton is an electrically neutral, electronically excited mobile state of a crystal, and it is the collective counterpart of the isolated excited molecule. The Wannier exciton is an electrically neutral, mobile electronic state of a crystal, and it is based on the correlated hole-electron pair [eh]. The spatial extent of the hole-electron pair can vary from near-neighbors (charge-transfer or CT exciton) to those of large-radius [8]. The first experimental evidence for the existence of an excitonic ion in an organic crystal was presented by Arnold, Pope and Hsieh [9]. These authors were looking into the suggestion of Pope and Kallman [10] that earlier experiments of Pope et al [11] could represent the interaction of a free carrier and a free or trapped CT exciton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Lampert, M.A., Phys. Rev. Lett. 1, 450 (1958).

    Article  ADS  Google Scholar 

  2. Gerlach, B., Phys. Stat. Sol. (b) 63, 459 (1974).

    Article  ADS  Google Scholar 

  3. Stébé, B. and Munschy, G., Solid State Comm. 17, 1051 (1975).

    Article  ADS  Google Scholar 

  4. Thomas, G.A. and Rice, T.M., Solid State Comm. 23, 359 (1977).

    Article  ADS  Google Scholar 

  5. Agranovich, V.M. and Zakhidov, A.A., Chem. Phys. Lett. 68, 86 (1979).

    Article  ADS  Google Scholar 

  6. Singh, J., Phys. Stat. Sol. (b) 103, 423 (1981).

    Article  ADS  Google Scholar 

  7. Gumbs, G. and Mavroyannis, G., Solid State Comm. 41, 237 (1982).

    Article  ADS  Google Scholar 

  8. See Pope, M. and Swenberg, C.E., “Electronic Processes in Organic Crystals”), Oxford University Press, 1982.

    Google Scholar 

  9. Arnold, S., Pope, M. and Hsieh, T.K.T., Phys. Stat. Sol. B94, 263 (1979).

    Article  ADS  Google Scholar 

  10. Pope, M. and Kallmann, H., Disc. Far. Soc. 51, 7 (1971).

    Article  Google Scholar 

  11. Pope, M., Burgos, J. and Giachino, J., J. Chem. Phys. 43, 3367 (1965).

    Article  ADS  Google Scholar 

  12. Altwegg, L., Pope, M., Arnold, S., Fowlkes, Wm.Y. and El Hamamsy, M.A., Rev. Sci. Instr. 53, 332 (1982).

    Google Scholar 

  13. Pope, M., Kallmann, H. and Giachino, J., J. Chem. Phys. 42, 2540 (1965).

    Article  ADS  Google Scholar 

  14. Altwegg, J., Fowlkes, Wm. Y. and Pope, M., Chem. Phys. 86, 471 (1984).

    Article  ADS  Google Scholar 

  15. Sebastian, L., Weiser, G. and Bässler, H., Chem. Phys. 61, 125 (1981).

    Article  ADS  Google Scholar 

  16. Popovic, Z.D., Chem. Phys. Lett. 100, 227 (1983).

    Article  ADS  Google Scholar 

  17. Altwegg, L., Davidovich, M.A., Funfschilling, J. and Zschokke-Gränacher, I., Phys. Rev. B18, 444 (1978).

    ADS  Google Scholar 

  18. Petelenz, P., Chem. Phys. 94, 407 (1985).

    Article  ADS  Google Scholar 

  19. Andreev, V. and Pope, M., Phys. Stat. Sol. (b) 125, 573 (1984).

    Article  ADS  Google Scholar 

  20. Munschy, G. and Stébé, B., Phys. Stat. Sol. 64, 213 (1974).

    Article  ADS  Google Scholar 

  21. Jing, X.-F., Zielinski, M. and Pope, M., Chem. Phys. Lett. 119, 173 (1985).

    Article  ADS  Google Scholar 

  22. Eastman Kodak Co. private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pope, M. (1987). Excitonic Ion and Auger Photoemission in Organic Crystals. In: Austin, R., et al. Protein Structure. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4796-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4796-8_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9159-6

  • Online ISBN: 978-1-4612-4796-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics