Skip to main content

Reactive Oxygen Species-Toxicity, Metabolism, and Reactions in the Eye

  • Chapter
The Microenvironment and Vision

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

  • 51 Accesses

Abstract

Oxygen, while providing the basis for aerobic life, is the source of partially reduced species which can react with biological molecules and lead to deleterious consequences for cells and tissues. Thus oxygen, due to its ubiquitous nature and its reactive intermediates superoxide (\( \text{O}_\text{2} \;^{\mathbf{\bar .}} \)) hydrogen peroxide (H2O2), hydroxyl radical (OH·), and singlet oxygen (1O2), can be toxic. Cells and tissues cope with reactive oxygen through an interconnected system of enzymatic and non-enzymatic defenses. Mechanisms of injury caused by these reactive intermediates, and biological defenses against them, will be reviewed in this chapter with special attention paid to the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleman, V. and P. Handler. 1967. Dihydroorotate dehydrogenase. J. BioI. Chern. 242:4087–4096.

    CAS  Google Scholar 

  • Ansari, N.H. and S.K. Srivastava. 1982. Role of glutathione in the prevention of cataractogenesis in rat lenses. Current Eye Res. 2:271–275.

    Article  Google Scholar 

  • Aust, S., Morehouse, L. and C. Thomas. 1985. Role of metals in oxygen radical reactions. J. Free Radicals BioI. Med. 1:3–26.

    Article  CAS  Google Scholar 

  • Babior, B. and W. Peters. 1981. The superoxide-producing enzyme of human neutrophils: further properties. J. BioI. Med. 256:2331–2323.

    Google Scholar 

  • Baccaneri, D. 1978. Coupled oxidation of NADPH with thiols at neutral pH. Arch. Biochem. Biophys. 191:351–357.

    Article  Google Scholar 

  • Ballou, D., Palmer, G. and V. Massey. 1969. Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprein. Biochem. Biophys. Res. Commun. 36:898–904.

    Article  PubMed  CAS  Google Scholar 

  • Barron, E.S.G. 1951. Thiol groups of biological importance. Adv. Enzymol. 11:201–266.

    Google Scholar 

  • Bhuyan, K.C, Bhuyan, D. K., Kuck, J. F.R. Jr., K. D. Kuck and H. L. Kern. 1982. Increased lipid peroxidation and altered membrane functions in Emory mouse cataract. Current Eye Res. 2:597–606.

    Article  Google Scholar 

  • Bielski, B. and J. Gebieki. 1977. Application of radiation chemistry to biology. In Free Radicals in Biology, Vol. 3, edited by W. Pryor. New York: Academic Press. p.1–48.

    Google Scholar 

  • Bielski, B. and P. Chan. 1974. Kinetic study by pulse radiolysis of the lactate dehydrogenase-catalyzed chain oxidation of nicotinamide adenine dinucleotide by HO2 and O2-radicals. J. Biol. Chern. 250:318–321.

    Google Scholar 

  • Blum, J. and I. Fridovich. 1984. Inactivation of glutathione peroxidase radicals. Arch. Biochem. Biophys. 240:500–508.

    Article  Google Scholar 

  • Brawn, K., and I., Fridovich. 1981. DNA strand scission by enzymemically generated oxygen radicals and Biochem. Biophys. 206:414–419.

    CAS  Google Scholar 

  • Bray, R., Cockle, S., Fielden, E., Roberts, P., Rotilio, B. and L. Calabrese. 1974. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J. 139:43–48.

    PubMed  CAS  Google Scholar 

  • Burton, G. and K. Ingold. 1984. Beta carotene: an unusual type of lipid antioxidant. Science 224:569–573.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E., Boveis, A., Ragan, I. and A. Stoppani. 1977. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubuquinol-cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180:248–257.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Bies, H., and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527–605.

    PubMed  CAS  Google Scholar 

  • Cohen, G. and P. Hochstein. 1963. Glutathione peroxidase: the primary agent for the elimination of H2O2 in erythrocytes. Biochemistry 2: 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  • Crapo, J. and D. Tierney. 1974. Superoxide dismutase and pulmonary oxygen toxicity. Am. J. Physiol. 226:1401–1407.

    PubMed  CAS  Google Scholar 

  • DeDuve, C. and P. Baudhuin. 1966. Peroxisomes (microbodies and related particles). Physiol. Rev. 323–357.

    Google Scholar 

  • Doroshow, J. and P. Hochstein. 1982. Redox cycling and the mechanism of action of antibiotics in neoplastic diseases. In Pathology of Oxygen, edited by A. Autor. New York: Academic Press. p. 245–259.

    Google Scholar 

  • Estabrook, R. W. and J. Werringloer. 1976. Cytochrome P450: its role in oxygen activation for drug metabolism. In Drug Metabolism Concepts, edited by D. Jerna. Washington D.C.: American Chemical Society. p.1–16.

    Google Scholar 

  • Fliesler, S. and R. Anderson. 1983. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22:79–131.

    Article  PubMed  CAS  Google Scholar 

  • Flohe, L. and W. Schlegel. 1971. Glutathione peroxidase IV. Hoppe Seylers Z. Physiol. Chem. 352:1401–1410.

    Article  CAS  Google Scholar 

  • Flohe, L., Loschen, G., Gunzler, W. and E. Eichele. 1972 Glutathione peroxidase V. The kinetic mechanism. Hoppe Seylers Z. Physiol. Chern. 353:987–999.

    Article  CAS  Google Scholar 

  • Flower, R. and D. Blake. 1981. Retrolental Fibroplasia: evidence for a role of the prostaglandin cascade in the pathogenesis of oxygen-induced retinopathy in the newborn beagle. Pediatr. Res. 15:1293–1302.

    PubMed  CAS  Google Scholar 

  • Foote, C. 1976. Photosensitized oxidation and singlet oxygen: consequences in biological systems. In Free Radicals in Biology, Vol. 2, edited by W. Pryor. New York: Academic Press. p. 85–125.

    Google Scholar 

  • Frank, L. 1982. Pretection for 02 toxicity by preexposure to hypoxia: lung antioxidant enzyme role. J. Appl. Physiol. 53:475–482.

    PubMed  CAS  Google Scholar 

  • Freeman, B., and J. Crapo. 1981. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. BioI. Chem. 256:10986–10992.

    CAS  Google Scholar 

  • Freeman, B. and J. Crapo. 1982. Biology of Disease: Free radicals and tissue injury. Lab. Invest. 47:412–426.

    PubMed  CAS  Google Scholar 

  • Fridovich, I. 1970. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. BioI. Chem. 245:4035–4057.

    Google Scholar 

  • Fridovich, I. 1983. Superoxide radical: an endogenous toxicant. Ann. Rev. Pharmacol. Toxicol. 23:239–257.

    Article  CAS  Google Scholar 

  • Garner, M. and A. Spector. 1980. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc. Natl. Acad. Sci. 77:1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Garner, W., Garner, M. and A. Spector. 1983. H2 O2-induced uncoupling of bovine lens Na, K+-ATPase. Proc. Natl. Acad. Sci. 80:2044–2048.

    Article  PubMed  CAS  Google Scholar 

  • Gotoh, T. and K. Shikama. 1976. Generation of the superoxide radical during the autooxidation of oxymyoglobin. J. Biochem. 80: 397–399.

    PubMed  CAS  Google Scholar 

  • Green, H.J. and H.A.O. Hill (1984) Chemistry of, dioxygen. Meth Enzymol. 105: 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, R. and W. Moy. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum. 23:455–463.

    Google Scholar 

  • Greenwald, R., Moy, W. and D. Lazarus. 1976. Degradation of cartilage proteoglycans and collagen by superoxide radical. Arthritis Rheum. 19: 799.

    Google Scholar 

  • Ham, W.T., Mueller J B.A., Ruffolo, J.J., Millen, J.E., Cleary, S.F., Guerry, R.K. and Guerry, D. 1984. Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Current Eye Res. 3:165–179.

    Article  CAS  Google Scholar 

  • Hemler, M., Cook, H. and W. Land. 1979. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch. Biochem. Biophys. 193:340–345.

    Article  PubMed  CAS  Google Scholar 

  • Hittner, H.M., Godio, L.B. Speer, M.E., Rudolph, A.J., Taylor M.M., Blifield, C., Kretzer, F.L. 1983. Retrolental fibroplasia: further clinical evidence and ultrastructural support for efficacy of vitamin E in the preterm infant. Pediatrics 71:423–32.

    PubMed  CAS  Google Scholar 

  • Hittner, H.M., Kretzer, F.L. and A.J. Rudolph. 1984. Prevention and management of retrolental fibroplasia. Hospital Practice. 19:85–94,99.

    Google Scholar 

  • Hodgson, E. and I. Fridovich. 1975. The interaction of bovine erythrocyte superoxidé dismutase wi th hydrogen peroxide: inactivation of the enzyme. Biochem. 14:5294–5303.

    Article  CAS  Google Scholar 

  • Joel, C., Briggs, S., Gaal, D., Hannan, J., Kahlow, M., Stein, M., Tarver, A. and A. Yip. 1981. Photodynamic injury to the retina of albino rabbi ts. Invest. Ophthalmol. Vis. Sci., ARVO Suppl., 166.

    Google Scholar 

  • Jones, D.P. 1982. Intracellular catalase function: analysis of the catalatic activity by product formation in isolated liver cells. Arch. Biochem. Biophys. 214:806–814.

    Article  PubMed  CAS  Google Scholar 

  • Kimball, R., Reddy, K., Pierce, T., Schwartz, L., Mustafa, M. and C. Cross. 1976. Oxygen toxicity: augmentation of antioxidant defense mechanisms in rat lung. Am. J. Physiol. 230:1425–1431.

    PubMed  CAS  Google Scholar 

  • Kono, Y. and I. Fridovich. 1982. Superoxide radical inhibits catalase. J. BioI. Chem. 256:5751–5754.

    Google Scholar 

  • Kosower, N. and E. Kosower. 1976. Functional aspects of glutathione disulfide and hidden forms of glutathione. In Glutathione: Metabolism and Function, edited by I. Arias and W. Jakoby. New York:Raven Press. p.159–172.

    Google Scholar 

  • Lynch, R., Lee G. and G. Cartwright. 1976. Inhibition by superoxide dismutase of methemoglobin formation from oxyhemoglobin. J. BioI. Chem. 251:1051–1019.

    Google Scholar 

  • Lynch, R. and I. Fridovich. 1978. Effects of superoxide on the erythrocyte membrane. J. BioI. Chern. 253:1838–1845.

    CAS  Google Scholar 

  • Marklund, S. and G. Marklund. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469–474.

    Article  PubMed  CAS  Google Scholar 

  • Marklund, S. 1984. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 74:1398–1403.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R. 1982. Free radical intermediates in the metabolism of toxic chemicals. In Free Radicals in Biology, Vol. 5, edi ted by W. Pryor. New York: Academic Press. p.161–222.

    Google Scholar 

  • Massey, V., Strickland, W., Mayhew, S., Howell, L., Engel, P., Mattew, R., Schuman, M., and P. Sullivan. 1969. Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprein. Biochem. Biophys. Res. Commun. 36:891–897.

    Article  PubMed  CAS  Google Scholar 

  • Masters, C. and R. Holmes. 1977. Peroxisomes: New aspects of cell physiology and biochemistry. Physiol. Rev. 57:816–882.

    PubMed  CAS  Google Scholar 

  • Misra, H. and I. Fridovich. 1971. The generation of superoxide radical during the autoxidation of ferredoxins. J. BioI. Chern. 246:6886–6890.

    CAS  Google Scholar 

  • Misra, H. and I. Fridovich. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. BioI. Chern. 247:3170–3175.

    CAS  Google Scholar 

  • Misra, H. and I. Fridovich. 1972. The generation of superoxide radical during the autoxidation of hemoglobin. J. BioI. Chern. 247:6960–6962.

    CAS  Google Scholar 

  • Mostafapour, M.K. and V.N. Reddy. 1982. Interactions of glutathione disulfide with lens crystallins. Current Eye Res. 2:591596.

    Google Scholar 

  • Nicholls, P. 1965. Activity of catalase in the red cell. Biochim. Biophys. Acta 99:286–297.

    PubMed  CAS  Google Scholar 

  • Nishiki, K., Jamieson, D., Oshino, N., and B. Chance. 1976. Oxygen toxici ty in the perfused rat liver and lung under hyperbaric conditions. Biochem. J. 160:343–355.

    PubMed  CAS  Google Scholar 

  • Nishimiki, M. 1975. Generation of superoxide anion in the reaction of tetrahydropterins with molecular oxygen. Arch. Biochem. Biophs. 166:273–279.

    Article  Google Scholar 

  • Nishimiki, N., Yamada, H. and K. Yagi. 1980. Oxidation by superoxide by tocopherols dispersed in aqueas media with deoxycholate. Biochim. Biophys. Acta. 627:101–108.

    Google Scholar 

  • Pryor, W. 1985. Oxy-radicals and related species: their formation, their lifetimes and their reactions. Annu. Rev. Physiol. 48:143.

    Google Scholar 

  • Rajagopalan, K. 1980. Xanthine oxidase and aldehyde oxidase. In Enzymatic Basis of Detoxification, Vol. 1, edited by W. Jakoby. New York: Academic Press. p. 295–309.

    Google Scholar 

  • Riley, D. and J. Kerr. 1985. Oxidant injury of the extracellular matrix: potential role in the pathogenesis of pulmonary emphysema. Lung 163:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Rister, M. and R. Baehner. 1976. The alteration of superoxide dismutase, catalase, glutathione peroxidase and NAD(P)H cytochrone c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia. J. Clin. Invest. 58:1174–1184.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H. and K. Summer. 1975. Hydroperoxide-metabolizing systems in rat liver. Eur. J. Biochem. 1975. 57:503–512.

    Article  PubMed  CAS  Google Scholar 

  • Sosnovsky, G. and D. Rawlinson. 1971. The chemistry of hydroperoxides in the presence of metal ions. In Organic Peroxides, ed. by D. Swern. New York: Wiley Interscience. p.153–268.

    Google Scholar 

  • Spector, A. and W.H. Garner. 1982. H2O2-induced formation of lens opacity in cultured lens. Fed. Proc. 41:1370–1374.

    Google Scholar 

  • Srivastava, S. and E. Beutler. 1969a. The transport of oxidized glutathione from human erythrocytes. J. BioI. Chern. 244:9–16.

    CAS  Google Scholar 

  • Srivastava, S. and E. Beutler. 1968b. Cataract produced by tyrosinase and tyrosine systems in rabbit lens in vitro. Biochem. J. 112:421–425.

    Google Scholar 

  • Tappel, A. 1969. Vitamin E as the biological lipid antioxidant.Vitam. Horm. 20: 493–510.

    Article  Google Scholar 

  • Turrens, J., Freeman, B., Levitt, J. and J. Crapo. 1982. The effect of hyperoxia on superoxide production by lung submi tochondrial particles. Arch. Biochem. Biophys. 217:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Ursini, F., Maiorino, M. and C. Gregolin. 1985. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839:62–7Q

    PubMed  CAS  Google Scholar 

  • Weisiger, R. and I. Fridovich. 1973. Superoxide dismutase: organelle specificity. J. BioI. Chern. 248:3582–3592.

    CAS  Google Scholar 

  • Wendel, A. 1980. Glutathione peroxidase. In Enzymatic Basis of Detoxification, Vol. 1, edited by W. Jakoby. New York: Academic Press. p.333–353.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Buckley, B., Freeman, B. (1987). Reactive Oxygen Species-Toxicity, Metabolism, and Reactions in the Eye. In: Sheffield, J.B., Hilfer, S.R. (eds) The Microenvironment and Vision. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4784-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4784-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9154-1

  • Online ISBN: 978-1-4612-4784-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics