Skip to main content

The Role of X and Simple Cells in the Contrast Transducer Function of Low Vision and Normal Observers

  • Conference paper
Book cover Low Vision
  • 137 Accesses

Abstract

The defining property of retinal X-like cells and cortical simple cells is that they exhibit a null phaseat which grating stimuli produce little or no response [1–5]. It follows that for such “linear summationcells a masking stimulus at the null phase should have no effect on detection of a stimulus at the optimum phase (90 degrees from the null phase). When the stimuli are in phase, however, we expect the masking stimulus to reduce sensitivity according to the power law of the contrast discrimination function [6]. Thus, if the contrast transducer function were determined exclusively by either retinal X-like cells or cortical simple cells, the degree of masking should be markedly affected by the phase of the background relative to the test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Hubel, T.N. Wiesel: Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146, 421 (1972)

    Article  PubMed  CAS  Google Scholar 

  2. C. Enroth-Cugell, J.G. Robson: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol: (Lond.) 187, 517 (1966)

    CAS  Google Scholar 

  3. P.H. Schiller, J.G. Malpeli: Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol. 41, 788 (1978)

    PubMed  CAS  Google Scholar 

  4. D.H. Hubel, T.N. Wiesel: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106 (1962)

    CAS  Google Scholar 

  5. E. Kaplan, R.M. Shapley: X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol. (Lond.) 330, 125 (1982)

    CAS  Google Scholar 

  6. G.E. Legge: A power law for contrast discrimination. Vision Res. 21, 457 (1981)

    Article  PubMed  CAS  Google Scholar 

  7. The Framingham Eye Study Monograph. Surv. Ophthalmol. (Suppl.) 24, 335 (1980)

    Google Scholar 

  8. J. Sjostrand, L. Frisen: Contrast sensitivity in macular disease. Acta Ophthalmol. (Copenh.) 55, 507 (1977)

    Article  CAS  Google Scholar 

  9. B. Brown: Reading performance in low vision patients: Relation to contrast and contrast sensitivity. Am. J. Optom. Physiol. Opt. 58, 218 (1981)

    PubMed  CAS  Google Scholar 

  10. G.S. Rubin, G.E. Legge: Predicting low-vision reading rates from measures of contrast sensitivity. Presented to the First meeting of Noninvasive Assessment of the Visual System sponsored by the Optical Society of America, Incline Village, Nevada (1985)

    Google Scholar 

  11. M. Wolkstein, A. Atkin, I. Bodis-Wollner: Contrast sensitivity in retinal disease. Ophthalmology (Rochester) 87, 1140 (1980)

    CAS  Google Scholar 

  12. R.F. Hess, R.J. Jacobs, A. Vingrys: Central versus peripheral vision: Evaluation of the residual function resulting from a uniocular macular scotoma. Am. J. Optom. Physiol. Opt. 55, 610 (1978)

    PubMed  CAS  Google Scholar 

  13. D.S. Loshin, J. White: Contrast sensitivity: The visual rehabilitation of the patient with macular degeneration. Arch. Ophthalmol. 102, 1303 (1984)

    PubMed  CAS  Google Scholar 

  14. R.C. Watzke: Acquired macular disease. In Clinical Ophthalmology, Vol. 3, Chapt. 23, ed. by T.D. Duane and E.A. Jaegar (Harper and Row, Philadelphia 1976)

    Google Scholar 

  15. A.M. Fine, M.J. Elman, J.E. Ebert, P.A. Prestia, J.S. Starr, S.L. Fine: Earliest symptoms caused by neovas- cular membranes in the macula. Arch. Ophthalmol. 104, 513 (1986)

    PubMed  CAS  Google Scholar 

  16. G.E. Legge, D. Kersten: Contrast discrimination in peripheral vision. Invest. Ophthalmol. Vis. Sci. (Suppl.) 27, 225 (1986)

    Google Scholar 

  17. J. Rovamo, V. Virsu, R. Nasaren: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54 (1978)

    Article  PubMed  CAS  Google Scholar 

  18. R.F. Hess, J.S. Pointer: Differences in the neural basis of human amblyopia: The distribution of the anomaly across the visual field. Vision Res. 25, 1577 (1985)

    Article  PubMed  CAS  Google Scholar 

  19. E. Peli, T. Peli: Image enhancement for the visually impaired. Opt. Eng. 23, 47 (1984)

    Google Scholar 

  20. R.L. De Valois: Encoding of spatial frequency, orientation, and contrast in striate cortex. Optic News 11, 119 (1985) and personal communication at ARVO (1986)

    Google Scholar 

  21. J. Rovamo, V. Virsu: An estimation and application of the human cortical and magnification factor. Exp. Brain Res. 37, 495 (1979)

    Article  PubMed  CAS  Google Scholar 

  22. G. Westheimer: Scaling of visual acuity measurements. Arch. Ophthalmol. 97, 327 (1979)

    PubMed  CAS  Google Scholar 

  23. C.W. Tyler: Space-time metric of function organization in human peripheral vision. Optic News 11, 113 (1985)

    Google Scholar 

  24. G.E. Legge, D.C. Pelli, G.S. Rubin, M. Schleske: Psychophysics of reading n. Low vision. Vision Res. 25, 253 (1985)

    Article  PubMed  CAS  Google Scholar 

  25. G.L. Goodrich, E.B. Mehr: Eccentric viewing training and low vision aids: Current practice and implications of peripheral retinal research. Am. J. Optom. Physiol. Opt. 63, 119 (1986)

    PubMed  CAS  Google Scholar 

  26. D.B. Gennery: Determination of optical transfer function by inspection of frequency-domain plot. J. Opt. Soc. Am. 63, 1571 (1973)

    Article  Google Scholar 

  27. T.B. Lawton: The effect of phase structure on spatial phase discrimination. Vision Res. 24, 139 (1984)

    Article  PubMed  CAS  Google Scholar 

  28. T.B. Lawton: Spatial frequency spectrum of patterns changes the visibility of spatial-phase differences. J. Opt. Soc. Am. (A) 2, 1140 (1985)

    Article  CAS  Google Scholar 

  29. G.B. Wetherill, H. Levitt: Sequential estimation of points on a psychometric function. Br. J. Math. Stat. Psychol. 18, 1 (1965)

    Article  PubMed  CAS  Google Scholar 

  30. K.E. Higgins, M.J. Jaffe, N.J. Coletta, R.C. Caruso, F.M. de Monasterio: Spatial contrast sensitivity: Importance of controlling the patient’s visibility criterion. Arch. Ophthalmol. 102, 1035 (1984)

    PubMed  CAS  Google Scholar 

  31. Y.L. Yap, H.E. Bedell, P.L. Abplanalp: Blind spot “fixation” in normal eyes: Implications for eccentric viewing in bilateral macular disease. Am. J. Optom. Physiol. Opt. 63, 259 (1986)

    PubMed  CAS  Google Scholar 

  32. T.B. Lawton, C.W. Tyler: The role of X and Simple cells in the contrast transducer function. Invest. Ophthalmol. Vis. Sci. (Suppl.) 27, 340 (1986)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this paper

Cite this paper

Lawton, T.B. (1987). The Role of X and Simple Cells in the Contrast Transducer Function of Low Vision and Normal Observers. In: Woo, G.C. (eds) Low Vision. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4780-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4780-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9152-7

  • Online ISBN: 978-1-4612-4780-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics