Attenuation of SAW Due to Electron Phonon Interaction

  • Moises Levy
  • Susan C. Schneider


Electron phonon attenuation produced by sound waves propagating in bulk materials has been studied extensively, both theoretically [1–5] and experimentally [6]. However, the computation of the electron phonon attenuation produced by surface acoustic waves (SAW) propagating in a thin metallic film deposited on a piezoelectric substrate is not as straightforward as for bulk waves, and no ab initio calculations similar to those of HOLSTEIN [1] and PIPPARD [2] exist for electron phonon interaction in thin films. There are, however, several models that incorporate the results of these earlier works to estimate SAW electron phonon attenuation in the limit where ql << 1, where q is the propagation vector of the sound wave and l is the electron mean free path [7–10]. Three of these models will be summarized here [7,9,10].


Sound Wave Surface Acoustic Wave Electron Phonon Interaction Metallic Film Bulk Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Holstein: Westinghouse Research Memo, 60–94698–3–M17 (1956), unpublished.Google Scholar
  2. 2.
    A.B. Pippard: Phil. Mag. 46, 1104 (1955).Google Scholar
  3. 3.
    W.P. Mason: Phys. Rev. 97, 557 (1955).ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Morse: Phys. Rev. 97, 1716 (1955).ADSCrossRefGoogle Scholar
  5. 5.
    Moises Levy: Phys. Rev. 131. 1497 (1963).ADSCrossRefGoogle Scholar
  6. 6.
    See for example, H.E. Bömmel: Phys. Rev. 96, 220 (1954). R.W. Morse and H.V. Bohm: Phys. Rev. 108, 1094 (l957). J.L. Brewster, M. Levy and I. Rudnick: Phys. Rev. 132, 1062 (1963). M. Levy and I. Rudnick: Phys. Rev. 132, 1073 (1963).Google Scholar
  7. 7.
    M. Tachiki, H. Salvo, Jr., D.A. Robinson and M. Levy: Sol. St. Commun. 17, 653 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    Moises Levy, Harry Salvo, Jr., David A. Robinson, Kajumi Maki and Masashi Tachiki: Proc. 1976 Ultrasonics Sym. (ed. by J. DeKlerk) (IEEE, New York, 1976), p. 633.CrossRefGoogle Scholar
  9. 9.
    H.L. Salvo, Jr., M. Levy: Proc. 1978 Ultrasonics Symp. (ed. by J. deKlerk) (IEEE, New York, 1978), p. 400.CrossRefGoogle Scholar
  10. 10.
    Dale R. Snider, Hans P. Fredricksen and Susan C. Schneider: J. Appl. Phys. 52, 3215 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    G.W. Farnell and E.L. Adler: In Physical Acoustics, Vol. IX, ed. by W.P. Mason and R.W. Morse (Academic Press, New York, 1972), p. 35.Google Scholar
  12. 12.
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer: Phys. Rev. 108, 1175 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    F. Akao: Phys. Lett. 30A, 409 (1969).ADSGoogle Scholar
  14. 14.
    D.A. Robinson, K. Maki and M. Levy: Phys. Rev. Lett. 32, 13 (1974).CrossRefGoogle Scholar
  15. 15.
    W. Bailey and B. Marshall: Phys. Rev. B19, 3467 (1969).ADSGoogle Scholar
  16. 16.
    H.R. Fredricksen, H.L. Salvo, Jr., M. Levy, R.H. Hammond, and T.H. Geballe: Phys. Lett. 75A, 389 (1980).ADSGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Moises Levy
  • Susan C. Schneider

There are no affiliations available

Personalised recommendations