Fractons and the Ioffe-Regel Limit

  • O. Entin-Wohlman


The fracton description of vibrational excitations in amorphous systems is reviewed. In particular, the lifetime of the vibrational modes, required for the interpretation of the line width in scattering experiments, is analyzed, with emphasis upon the strong scattering regime. A new argument suggests that fractons are always in the strong scattering, Ioffe-Regel limit. Their relevant fracton dimensionality then has. a universal value of 4/3. Comparison is made with experimental data.


Silica Aerogel Vibrational Excitation Localization Length Anderson Localization Crossover Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Ioffe and A. R. Regel, Progress in Semiconductors 4, 237 (1960)Google Scholar
  2. N. F. Mott, Phil. Mag. 19, 835 (1969).ADSCrossRefGoogle Scholar
  3. 2.
    R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).ADSGoogle Scholar
  4. 3.
    J. E. Graebner, B. Golding, and J. C. Allen, preprint, 1986.Google Scholar
  5. 4.
    Lord Rayleigh, Theory of Sound (McMillan, London, 1896), Vol. II.zbMATHGoogle Scholar
  6. 5.
    S. John, H. Sompolinsky, and M. J. Stephen, Phys. Rev. B 27, 5592 (1983)ADSGoogle Scholar
  7. 6.
    E. Akkermans and R. Maynard, Phys. Rev. B 32, 7850 (1985).ADSGoogle Scholar
  8. 7.
    P. W. Anderson in T. Holstein Memorial Volume, ed. R. Orbach (Los Angeles, 1986).Google Scholar
  9. 8.
    S. Alexander and R. Orbach, J. de Physique Lett. 43, L625 (1982).CrossRefGoogle Scholar
  10. 9.
    S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B 28, 4615 (1983).ADSGoogle Scholar
  11. 10.
    A. Aharony, S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. B 31, 2565 (1985).ADSGoogle Scholar
  12. 11.
    S. Alexander, O. Entin-Wohlman, and R. Orbach, J. de Physique Lett 46, L549, L555 (1985)CrossRefGoogle Scholar
  13. Phys. Rev. B 32, 6447 (1985)Google Scholar
  14. Phys. Rev B 33, 3935 (1986).Google Scholar
  15. 12.
    S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. B 32, 8007 (1985).ADSGoogle Scholar
  16. 13.
    S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. Lett. (submitted)Google Scholar
  17. Phys. Rev. B 34, 2726 (1986).Google Scholar
  18. 14.
    A. K. Raychaudhuri, Ph.D. Thesis, Cornell University (1980), unpublishedGoogle Scholar
  19. J. E. de Oliviera and H. M. Rosenberg, private communication (1986).Google Scholar
  20. 15.
    A. Aharony, S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. Lett, (submitted)Google Scholar
  21. S. Alexander, Proc. of Stat. Phys., ed. H. E. Stanley (Boston, 1986).Google Scholar
  22. 16.
    S. Alexander, Ann. Isr. Phys. Soc. 5, 144 (1983).Google Scholar
  23. 17.
    Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).ADSCrossRefGoogle Scholar
  24. 18.
    Although we use the language of “scalar” elasticity [S. Alexander, J. de Physique 45, 1939 (1984)], the results equally apply for bending forces [I. Webman and Y. Kantor, in Kinetics of Aggregation and Gelation eds., F. Family and D. P. Landau (North Holland, Amsterdam, 1984)]Google Scholar
  25. 19.
    E. Courtens, J. Pelous, J. Phalippou, R. Vacher, and T. Woignier, preprint, 1986.Google Scholar
  26. 20.
    R. Rammal and G. Toulouse, J. de Physique Lett. 44, L13 (1983).CrossRefGoogle Scholar
  27. 21.
    S. Kelham and H. M. Rosenberg, J. Phys. C14, 1737 (1981).ADSGoogle Scholar
  28. 22.
    Y. J. Uemura and R. J. Birgeneau, preprint, 1986.Google Scholar
  29. 23.
    One notes that the average in Eq. (15) is taken in a fractal space of dimensionality D. The reason for it is that we have used for the phonon density of states, Eq. (10), the form normalized in this space. In the percolation language, this means that we have considered the infinite cluster alone. When the finite clusters are included as well, to ensure that the overall density is uniform, the prefactor in the phonon density of states is changed into \(\mathop \omega \nolimits_c^{ - d\theta /(2 + \theta )} \)(see Ref. 10). The averaging is then carried out in Euclidean space and our final expression for τ-1, Eq. (15), is unchanged.Google Scholar
  30. 24.
    A. Aharony, Y. Gefen, and Y. Kantor, J. Stat. Phys. 36, 795 (1984)MathSciNetADSCrossRefGoogle Scholar
  31. Scaling Phenomena in Disordered Systems, eds., R. Pynn and A. Skjeltorp (Plenum, New York, 1985).Google Scholar
  32. 25.
    A. B. Harris, S. Kim, and T. C. Lubensky, Phys. Rev. Lett. 53, 743; 54, 1088 (1984)ADSCrossRefGoogle Scholar
  33. D. C. Hong, S. Havlin, H. J. Herrmann, and H. E. Stanley, Phys. Rev. B 30, 4083 (1984)ADSGoogle Scholar
  34. J. G. Zabolitzky, ibid., 4077Google Scholar
  35. H. J. Herrmann, B. Derrida, and J. Vannimenus, ibid., 4080Google Scholar
  36. R. Rammal, J. C. Angler d’Auriac, and A. Benoit, ibid., 4087Google Scholar
  37. J. C. Lobb and D. J. Frank, ibid., 4090Google Scholar
  38. F. Leyvraz and H. E. Stanley, Phys. Rev. Lett. 51, 2048 (1983)ADSCrossRefGoogle Scholar
  39. A. Aharony and D. Stauffer, Phys. Rev. Lett. 52, 2368 (1984).ADSCrossRefGoogle Scholar
  40. 26.
    E. Courtens, private communication.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • O. Entin-Wohlman

There are no affiliations available

Personalised recommendations