Advertisement

Polarons and Subsurface Bonding

  • Ivan K. Schuller
  • M. Lagos

Abstract

We have calculated the bonding energy of a hydrogen atom below the surface of Nb(110) and Pd(111) due to the interaction with the surface phonons. Our results show that at room temperature, there is a deep potential well just below the surface of Nb(110) with a much shallower well for Pd(111). Due to this, the kinetics of hydrogen absorption by Nb(110) surface and Pd covered Nb is drastically affected. The kinetic equations, modified to include this subsurface potential well, show that the subsurface-trapped hydrogen acts as a valve for the admission of hydrogen into the bulk. A large variety of experimental facts clearly follow from these considerations.

Keywords

Hydrogen Absorption Metal Hydride Absorption Kinetic Hydrogen Impurity Trapping Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Pick, J. W. Davenport, M. Strongin and G. J. Dienes: Phys. Rev. Letters 43, 286 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    M. Strongin, M. El-Batanouny and M. A. Pick: Phys. Rev. B22, 3126 (1980).ADSGoogle Scholar
  3. 3.
    M. El-Batanouny, M. Strongin, G. P. Williams and J. Colbert: Phys. Rev. Letters 46, 269 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    M. Lagos and I. K. Schuller: Surf. Scie. Letters 138, L161 (1984).Google Scholar
  5. 5.
    M. Lagos, G. Martinez and I. K. Schuller: Phys. Rev. B29, 5979 (1984).ADSGoogle Scholar
  6. 6.
    C. Kittel: Quantum Theory of Solids, (J. Wiley and Sons eds., New York 1983), pg. 16.Google Scholar
  7. 7.
    T. Holstein: Ann. Phys. (NY) 8, 325, 343 (1959).ADSCrossRefGoogle Scholar
  8. 8.
    J. A. Pryde and C. G. Titcomb: J. Phys. C5, 1293 (1972).ADSGoogle Scholar
  9. 9.
    G. Comsa, R. David and B. J. Schumacher: Surf. Scie. 95, L210 (1980).Google Scholar
  10. 10.
    R. J. Smith: Phys. Rev. B21, 3131 (1980).ADSGoogle Scholar
  11. 11.
    H. Conrad, G. Ertl and E. E. Latta: Surf. Scie. 41, 435 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    H. Pfeiffer and H. Peisl: Phys. Letters 60A, 363 (1977).ADSGoogle Scholar
  13. 13.
    J. M. Rowe, J. J. Rush, H. G. Smith, M. Mostoller and H. E. Flotow: Phys. Rev. Letters 33, 1297 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    R. J. Behm, V. Penka, M. G. Cattania, K. Christman and G. Ertl: J. Chem. Phys. 78, 7486 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    K. H. Rieder, M. Baumberger and W. Stocker: Phys. Rev. Letters 51, 1799 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Pick: In Metal Hydrides, ed. by G. Bambadakis (Plenum, New York 1981).Google Scholar
  17. 17.
    The solution of the kinetic equations has been criticized by a comparison of experimental data and our theoretical calculation (G. J. Dienes, M. Strongin and O. Welch: Phys. Rev. B32, 5478 (1985)). This criticism has been shown to be incorrect (M. Lagos and I. K. Schuller: Phys. Rev. B 32, 5477 (1985)).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Ivan K. Schuller
  • M. Lagos

There are no affiliations available

Personalised recommendations