Skip to main content

States of Aldosterone Deficiency or Pseudodeficiency

  • Chapter

Part of the book series: Endocrinology and Metabolism ((EAM,volume 1))

Abstract

Sodium, chloride, potassium, and acid-base homeostasis in humans is dependent in part on the “mineralocorticoid activity” of steroid hormones secreted by the adrenal cortex and is reflected in the electrolyte and acid-base composition of the extracellular fluid and in the volume of the arterial blood. Aldosterone is the only adrenal steroid known to participate in the physiologic feedback regulation of electrolyte and volume homeostasis. Thus, primary or secondary disorders of the adrenal cortex that result in subnormal rates of aldosterone production are characterized by abnormalities in extracellular fluid volume, blood pressure, and electrolyte and acid-base composition. In addition, rare disorders in which signs and symptoms of aldosterone deficiency are present despite normal or elevated levels of aldosterone (so-called pseudohypoaldosteronism) also result in major alterations in mineral homeostasis. This chapter will review the pathophysiology and treatment of disorders due to aldosterone deficiency and pseudodeficiency in the context of our current understanding of the physiologic effects of mineralocorticoid hormones, summarized in Section I.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garrod O, Davies SA, Cahill G Jr (1955) The action of cortisone and desoxycorticosterone acetate on glomerular filtration rate and sodium and water exchange in the adrenalectomized dog. J Clin Invest 34:761–776.

    PubMed  CAS  Google Scholar 

  2. Vander AJ, Malvin RL, Wilde WS, Lapides J, Sullivan LP, McMurray VM (1958) Effects of adrenalectomy and aldosterone on proximal and distal tubular sodium reabsorption. Proc Soc Exp Biol Med 99:323–332.

    PubMed  CAS  Google Scholar 

  3. Hierholzer K, Wiederholt M, Stolte H (1966) Hemmung der Natriumresorption in Proximalen und Distalen Konvolut adrenalektomierter Ratten. Pfluegers Arch 291:43–62.

    CAS  Google Scholar 

  4. Garg LC, Knepper MA, Burg MB (1981) Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol 240:F536-F544.

    PubMed  CAS  Google Scholar 

  5. Gross JB, Imai M, Kokko JP (1975) A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J Clin Invest 55:1284–1294.

    PubMed  CAS  Google Scholar 

  6. Stone DK, Seidin DW, Kokko JP, Jacobson HR (1983) Mineralocorticoid modification of rabbit medullary collecting duct acidification: A sodium-independent effect. J Clin Invest 72:77–83.

    PubMed  CAS  Google Scholar 

  7. Uhlich E, Baldamus CA, Ullrich KJ (1969) Einflu von Aldosteron auf den Natriumtransport in den Sammelrohren der Saugetierniere. Pfluegers Arch 308:111–126.

    CAS  Google Scholar 

  8. Tisher CC (1981) Anatomy of the kidney. In Brenner BM, Rector FC Jr (eds.): The Kidney. Saunders, Philadelphia, pp 3–75.

    Google Scholar 

  9. Feldman D, Funder JW, Edelman IS (1972) Subcellular mechanisms in the action of adrenal steroids. Am J Med 53:545–560.

    PubMed  CAS  Google Scholar 

  10. Funder JW, Feldman D, Edelman IS (1973) The role of plasma binding and receptor specificity in the mineralocorticoid action of aldosterone. Endocrinology 92:994–1004.

    PubMed  CAS  Google Scholar 

  11. Baxter JD, Schambelan M, Matulich DT, Spindler BJ, Taylor AA, Bartter FC (1976) Aldosterone receptors and the evaluation of plasma mineralocorticoid activity in normal and hypertensive states. J Clin Invest 58:579–589.

    PubMed  CAS  Google Scholar 

  12. Samuels HH, Tomkins GM (1970) Relation of steroid structure to enzyme induction in hepatoma tissue culture cells. J Mol Biol 52:57–74.

    PubMed  CAS  Google Scholar 

  13. Crabbe J, DeWeer P (1964) Action of aldosterone on the bladder and skin of the toad. Nature 202:298–299.

    PubMed  CAS  Google Scholar 

  14. Edelman IS, Bogoroch R, Porter GA (1963) On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis. Proc Natl Acad Sci USA 50:1169–1177.

    PubMed  CAS  Google Scholar 

  15. Fanestil DD (1968) Mode of spironolactone action: Competitive inhibition of aldosterone binding to mineralocorticoid receptors. Biochem Pharmacol 17:2240–2242.

    PubMed  CAS  Google Scholar 

  16. Vandewalle A, Farman N, Bencsath P, Bonvalet JP (1981) Aldosterone binding along the rabbit nephron: An autoradiographic study on isolated tubules. Am J Physiol 240:F172-F179.

    PubMed  CAS  Google Scholar 

  17. Crabbe J (1961) Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J Clin Invest 40:2103–2110.

    PubMed  CAS  Google Scholar 

  18. Stokes JB, Ingram MJ, Williams AD, Ingram D (1981) Heterogeneity of the rabbit collecting tubule: Localization of mineralocorticoid hormone action to the cortical portion. Kidney Int 20:340–347.

    PubMed  CAS  Google Scholar 

  19. Al-Awqati Q, Norby LH, Mueller A, Steinmetz PR (1976) Characteristics of stimulation of H transport by aldosterone in turtle urinary bladder. J Clin Invest 58:351–358.

    PubMed  CAS  Google Scholar 

  20. Koeppen BM, Helman SI (1982) Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am J Physiol 242:F521-F531.

    PubMed  CAS  Google Scholar 

  21. Hanley MJ, Kokko JP (1978) Study of chloride transport across the rabbit cortical collecting tubule. J Clin Invest 62:39–44.

    PubMed  CAS  Google Scholar 

  22. Handler JS, Preston AS, Orloff J (1969) Effect of adrenal steroid hormones on the response of the toad’s urinary bladder to vasopressin. J Clin Invest 48:823–833.

    PubMed  CAS  Google Scholar 

  23. Koeppen BM, Biagi BA, Giebisch G (1983) Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol 244:F35-F47.

    PubMed  CAS  Google Scholar 

  24. Stokes JB (1985) Mineralocorticoid effect on K permeability of the rabbit cortical collecting tubule. Kidney Int 28:640–645.

    PubMed  CAS  Google Scholar 

  25. Katz AI, Epstein FH (1967) The role of sodium-potassium activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J Clin Invest 46:1999–2011.

    PubMed  CAS  Google Scholar 

  26. Petty KJ, Kokko JP, Marver D (1981) Secondary effect of aldosterone on Na-K ATPase activity in the rabbit cortical collecting tubule. J Clin Invest 68:1514–1521.

    PubMed  CAS  Google Scholar 

  27. Geering K, Girardet M, Bron C, Krachenbuhe J-P, Rossier BC (1982) Hormonal regulation of (Na, K)-ATPase biosynthesis on the toad bladder: Effect of aldosterone and 3,5,3′-triiodo-L-thyronine. J Biol Chem 257:10338–10343.

    PubMed  CAS  Google Scholar 

  28. Edelman IS, Fanestil DD (1970) Mineralocorticoids. In Litwack G (ed): Biochemical Actions of Hormones. Academic Press, New York, pp 321–364.

    Google Scholar 

  29. Stanton BA, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion. Kidney Int 19:36–48.

    PubMed  CAS  Google Scholar 

  30. Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int 17:45–56.

    PubMed  CAS  Google Scholar 

  31. Stokes JB (1981) Potassium secretion by cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241:F395-F402.

    PubMed  CAS  Google Scholar 

  32. Ludens JH, Fanestil DD (1974) Aldosterone stimulation of acidification of urine by isolated urinary bladder of the Colombian toad. Am J Physiol 226:1321–1326.

    PubMed  CAS  Google Scholar 

  33. Al-Awqati Q (1978) H transport in urinary epithelia. Am J Physiol 235:F77-F88.

    PubMed  CAS  Google Scholar 

  34. Dixon TE, Al-Awqati Q (1979) Urinary acidification in turtle bladder is due to a reversible proton-translocating ATPase. Proc Natl Acad Sci USA 76:3135–3138.

    PubMed  CAS  Google Scholar 

  35. Stone DK, Seldin DW, Kokko JP, Jacobson HR (1983) Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest 71:1505–1508.

    PubMed  CAS  Google Scholar 

  36. Lombard WE, Kokko JP, Jacobson HR (1979) Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol 244. F289-F296.

    Google Scholar 

  37. Blizzard RM, Kyle M (1963). Studies of the adrenal antigens and antibodies in Addison’s disease. J Clin Invest 42:1653–1660.

    PubMed  CAS  Google Scholar 

  38. Bondy PK (1985) Disorders of the adrenal cortex. In Wilson JD, Foster DW (eds): Williams Textbook of Endocrinology, 7th Ed. Saunders, Philadelphia, pp 816–893.

    Google Scholar 

  39. Brown JJ, Fraser R, Lever AF, Robertson JIS, James VHT, McCusker J, Wynn V (1968): Renin, angiotensin, corticosteroids, and electrolyte balance in Addison’s disease. Q J Med 37:97–118.

    PubMed  CAS  Google Scholar 

  40. Haack D, Mohring J, Mohring B, Petri M, Hackenthal E (1977) Comparative study on development of corticosterone and DOC A hypertension in rats. Am J Physiol 233:F403-F411.

    PubMed  CAS  Google Scholar 

  41. Boykin J, DeTorrente A, Erickson A, Robertson G, Schrier RW (1978) Role of plasma vasopressin in impaired water excretion of glucocorticoid deficiency. J Clin Invest 62:738–744.

    PubMed  CAS  Google Scholar 

  42. Sebastian A, Sutton JM, Hulter HN, Schambelan M, Poler SM (1980) Effect of mineralocorticoid replacement therapy on renal acid-base homeostasis in adrenalectomized patients. Kidney Int 18:762–773.

    PubMed  CAS  Google Scholar 

  43. Smith SG, Markandu ND, Banks RA, Dorrington-Ward P, MacGregor GA, Bayless J, Prentice MG, Wise P (1984) Evidence that patients with Addison’s disease are undertreated with fludrocortisone. Lancet 1:11–14.

    PubMed  CAS  Google Scholar 

  44. Thompson DG (1979) Mineralocorticoid replacement in Addison’s disease. Clin Endocrinol (Oxf) 10:499–506.

    CAS  Google Scholar 

  45. Miller PD, Waterhouse C, Owens R, Cohen E (1975) The effect of potassium loading on sodium excretion and plasma renin activity in Addisonian man. J Clin Invest 56:346–353.

    PubMed  CAS  Google Scholar 

  46. Baxter JD, Tyrell JB (1981) The adrenal cortex. In Felig P, Baxter JD, Broadus AE, Frohman LA (eds): Endocrinology and Metabolism. McGraw-Hill, New York, pp 385–510.

    Google Scholar 

  47. Finkelstein M, Shaefer JM (1979) Inborn errors of steroid biosynthesis. Physiol Rev 59:353–406.

    PubMed  CAS  Google Scholar 

  48. Keenan BS, Holcombe JH, Kirkland RT, Potts VE, Clayton GW (1979) Sodium homeostasis and aldosterone secretion in salt-losing congenital adrenal hyperplasia. J Clin Endocrinol Metab 48:430–436.

    PubMed  CAS  Google Scholar 

  49. Horner JM, Hintz RL, Luetscher JA (1979) The role of renin and angiotensin in salt-losing 21-hydroxylase-deficient congenital adrenal hyperplasia. J Clin Endocrinol Metab 48:776–783.

    PubMed  CAS  Google Scholar 

  50. Landau RL, Lugibihl K (1958) Inhibition of the sodium retaining influence of aldosterone by progesterone. J Clin Endocrinol Metab 18:1237–1245.

    PubMed  CAS  Google Scholar 

  51. Jacobs DR, Van der Poll J, Gabrilove JL, Soffer LJ (1961) 17α-hydroxy-progesterone—a salt-losing steroid: Relation to congenital adrenal hyperplasia. J Clin Endocrinol Metab 21:909–922.

    PubMed  CAS  Google Scholar 

  52. Ulick S (1976) Diagnosis and nomenclature of the disorders of the terminalportion of the aldosterone biosynthetic pathway. J Clin Endocrinol Metab 43:92–96.

    PubMed  CAS  Google Scholar 

  53. Rosler A, Rabinowitz D, Theodor R, Ramirez LC, Ulick S (1977) The nature of the defect in ä salt-wasting disorder in Jews of Iran. J Clin Endocrinol Metab 44:279–281.

    PubMed  CAS  Google Scholar 

  54. Veldhuis JD, Kulin HE, Santen RJ, Wilson TE, Melby JC (1980) Inborn error in the terminal step of aldosterone biosynthesis: Corticosterone methyl oxidase type II deficiency in a North American pedigree. N Engl J Med 303:117–121.

    PubMed  CAS  Google Scholar 

  55. Williams FA Jr, Schambelan M, Biglieri EG, Carey RM (1983) Acquired primary hypoaldosteronism due to an isolated zona glomerulosa defect. N Engl J Med 309:1623–1627.

    PubMed  Google Scholar 

  56. Carey RW, Schambelan M, Biglieri EG, Bright GM (1984) Primary hypoaldosteronism due to zona glomerulosa defect. (Letter to the editor.) N Engl J Med 310:1394–1395.

    Google Scholar 

  57. Marieb NJ, Melby JC, Lyall SS (1974) Isolated hypoaldosteronism associated with idiopathic hypoparathyroidism. Arch Intern Med 134:424–429.

    PubMed  CAS  Google Scholar 

  58. Saenger P, Levine LS, Irvine WJ, Gottesdiener K, Rauh W, Sonino N, Chow D, New MI (1982) Progressive adrenal failure in polyglandular autoimmune disease. J Clin Endocrinol Metab 54:863–868.

    PubMed  CAS  Google Scholar 

  59. Zipser RD, Davenport MW, Martin KL, Tuck ML, Warner NE, Swinney RR, Davis CL, Horton R (1981) Hyperreninemic hypoaldosteronism in the critically ill: A new entity. J Clin Endocrinol Metab 53:867–873.

    PubMed  CAS  Google Scholar 

  60. Stern N, Beck FWJ, Sowers JR, Tuck M, Hsueh WA, Zipser RD (1983) Plasma corticosteroids in hyperreninemic hypoaldosteronism: Evidence for diffuse impairment of the zona glomerulosa. J Clin Endocrinol Metab 57:217–220.

    PubMed  CAS  Google Scholar 

  61. O’Kelly R, Magee F, McKenna TJ (1983) Routine heparin therapy inhibits adrenal aldosterone production. J Clin Endocrinol Metab 56:108–112.

    PubMed  Google Scholar 

  62. Warren SE, O’Connor DT (1980) Hyperkalemia resulting from Captopril administration. JAMA 244:2551–2552.

    PubMed  CAS  Google Scholar 

  63. DeFronzo RA (1980) Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int 17:118–134.

    PubMed  CAS  Google Scholar 

  64. Phelps KR, Lieberman RL, Oh MS, Caroll HJ (1980) Pathophysiology of the syndrome of hyporeninemic hypoaldosteronism. Metabolism 29:186–199.

    PubMed  CAS  Google Scholar 

  65. Schambelan M, Sebastian A, Biglieri EG (1980) Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 17:89–101.

    PubMed  CAS  Google Scholar 

  66. Landier F, Guyene TT, Boutignon H, Nahoul K, Corvol P, Job J-C (1984) Hyporeninemic hypoaldosteronism in infancy: A familial disease. J Clin Endocrinol Metab 58:143–148.

    PubMed  CAS  Google Scholar 

  67. Morimoto S, Kim KS, Yamamoto I, Uchida K, Takeda R, Kornel L (1979) Selective hypoaldosteronism with hyperreninemia in a diabetic patient. J Clin Endocrinol Metab 49:742–747.

    PubMed  CAS  Google Scholar 

  68. Schambelan M, Stockigt JR, Biglieri EG (1972) Isolated hypoaldosteronism in adults: A renin deficiency syndrome. N Engl J Med 287:573–578.

    PubMed  CAS  Google Scholar 

  69. Weidmann P, Reinhart R, Maxwell MH, Rowe P, Coburn JW, Massry SG (1973) Syndrome of hyporeninemic hypoaldosteronism and hyperkalemia in renal disease. J Clin Endocrinol Metab 36:965–977.

    PubMed  CAS  Google Scholar 

  70. Oh MS, Carroll HJ, Clemmons JE, Vagnucci AH, Levison SP, Whang ESM (1974) A mechanism for hyporeninemic hypoaldosteronism in chronic renal disease. Metabolism 23:1157–1165.

    PubMed  CAS  Google Scholar 

  71. Sebastian A, Schambelan M, Lindenfeld S, Morris RC Jr (1977) Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoal-dosteronism. N Engl J Med 297:576–583.

    PubMed  CAS  Google Scholar 

  72. Sparagana M (1975) Hyporeninemic hypoaldosteronism with diabetic glomerulosclerosis. Biochem Med 14:93–103.

    PubMed  CAS  Google Scholar 

  73. Tuck ML, Sambhi MP, Levin L (1979) Hyporeninemic hypoaldosteronism in diabetes mellitus: Studies of the autonomic nervous system’s control of renin release. Diabetes 28:237–241.

    PubMed  CAS  Google Scholar 

  74. DeLeiva A, Christlieb AR, Melby JC, Graham CA, Day RP, Luetscher JA, Zager PG (1976) Big renin and biosynthetic defect of aldosterone in diabetes mellitus N Engl J Med 295:639–643.

    PubMed  CAS  Google Scholar 

  75. Tuck ML, Mayes DM (1980) Mineralocorticoid biosynthesis in patients with hyporeninemic hypoaldosteronism. J Clin Endocrinol Metab 50:341–347.

    PubMed  CAS  Google Scholar 

  76. Kater CE, Biglieri EG, Rost CR, Schambelan M, Hirai J, Chang BCF, Brust N (1985) The constant plasma 18-hydroxycorticosterone to aldosterone ratio: An expression of the efficacy of corticosterone methyloxidase type II activity in disorders with variable aldosterone production. J Clin Endocrinol Metab 60:225–228.

    PubMed  CAS  Google Scholar 

  77. Schambelan M, Kater CE, Biglieri EG, Sebastian A (1982) Response of plasma 18-hydroxycorticosterone and aldosterone to infusion of des-Asp1-angiotensin II demonstrates a generalized reduction of adrenal zona glomer-ulosa function in isolated hypoaldosteronism. Program 64th Annual Meeting Endocrine Society, p 189.

    Google Scholar 

  78. Kater CE, Biglieri EG (1982) Zona fasciculata origin of 18-hydroxycorticos-terone in the chronically suppressed zona glomerulosa. J Clin Endocrinol Metab 55:628–633.

    PubMed  CAS  Google Scholar 

  79. Dluhy RG, Axelrod L, Underwood RH, Williams GH (1972) Studies of the control of plasma aldosterone concentration in normal man. II. Effect of dietary potassium and acute potassium infusion. J Clin Invest 51:1950–1957.

    PubMed  CAS  Google Scholar 

  80. Peters W, Schambelan M, Sebastian A, Biglieri EG (1983) Aldosterone ameliorable hyperkalemia induced by angiotensin converting enzyme inhibitor. Kidney Int 23:131.

    Google Scholar 

  81. Pratt JH (1982) Role of angiotensin II in potassium-mediated stimulation of aldosterone secretion in the dog. J Clin Invest 70:667–672.

    PubMed  CAS  Google Scholar 

  82. Hudson JB, Chobanian AV, Relman AS (1957) Hypoaldosteronism. A clinical study of a patient with an isolated adrenal mineralocorticoid deficiency, resulting in hyperkalemia and Stokes-Adams attacks. N Engl J Med 257:529–536.

    PubMed  CAS  Google Scholar 

  83. Maher T, Schambelan M, Kurtz I, Hulter HN, Jones JW, Sebastian A (1984) Amelioration of metabolic acidosis by dietary potassium restriction in hyper-kalemic patients with chronic renal insufficiency. J Lab Clin Med 103:432–445.

    PubMed  CAS  Google Scholar 

  84. Bosch JP, Goldstein MH, Levitt MF, Kahn T (1977) Effect of chronic furosemide administration on hydrogen and sodium excretion in the dog. Am J Physiol 232:F397-F404.

    PubMed  CAS  Google Scholar 

  85. Sebastian A, Schambelan M, Sutton JM (1984) Amelioration of hyperchloremic acidosis and hyperkalemia with furosemide therapy in patients with chronic renal insufficiency and type 4 renal tubular acidosis. Am J Nephrol 4:287–300.

    PubMed  CAS  Google Scholar 

  86. Cheek DB, Perry JW (1958) A salt wasting syndrome in infancy. Arch Dis Child 33:252–256.

    PubMed  CAS  Google Scholar 

  87. Donnell GN, Litman N, Roldan M (1959) Pseudohypoadrenaiocorticism. Am J Dis Child 97:813–828.

    CAS  Google Scholar 

  88. Raine DN, Roy J (1962) A salt-losing syndrome in infancy. Pseudohypoadre-nocorticalism. Arch Dis Child 37:548–556.

    PubMed  CAS  Google Scholar 

  89. Postel-Vinay M-C, Alberti GM, Ricour C, Limal J-M, Rappaport R, Royer P (1974) Pseudohypoaldosteronism: Persistence of hyperaldosteronism and evidence for renal tubular and intestinal responsiveness to endogenous aldosterone. J Clin Endocrinol Metab 39:1038–1044.

    PubMed  CAS  Google Scholar 

  90. Rosler A, Theodor R, Boichis H, Gerty R, Ulick S, Alagem M, Tabachnik E, Cohen B, Rabinowitz D (1977) Metabolic responses to the administration of angiotensin II, K and ACTH in two salt-wasting syndromes. J Clin Endocrinol Metab 44:292–301.

    PubMed  CAS  Google Scholar 

  91. Cogan MG, Arieff AI (1978) Sodium wasting, acidosis and hyperkalemia induced by methicillin interstitial nephritis: Evidence for selective distal tubular dysfunction. Am J Med 64:500–507.

    PubMed  CAS  Google Scholar 

  92. Stanbury SW, Mahler RF (1959) Salt-wasting renal disease: Metabolic observations on a patient with salt-losing nephritis. Q J Med 28:425–447.

    PubMed  CAS  Google Scholar 

  93. Armanini D, Kuhnle U, Strasser T, Dorr H, Butenandt I, Weber PC, Stockigt JR, Pearce P, Funder JW (1985) Aldosterone receptor deficiency in pseudohypoaldosteronism. N Engl J Med 313:1178–1181.

    PubMed  CAS  Google Scholar 

  94. Arnold JE, Healy JK (1969) Hyperkalemia, hypertension and systemic acidosis without renal failure associated with a tubular defect in potassium excretion. Am J Med 47:461–472.

    PubMed  CAS  Google Scholar 

  95. Gordon RD, Geddes RA, Pawsey CGK, O’Halloran MW (1970) Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Aust Ann Med 4:287–294.

    Google Scholar 

  96. Spitzer A, Edelmann CM Jr, Goldberg LD, Henneman PH (1973) Short stature, hyperkalemia and acidosis: A defect in renal transport of potassium. Kidney Int 3:251–257.

    PubMed  CAS  Google Scholar 

  97. Weinstein SF, Allan DME, Mendoza SA (1974) Hyperkalemia, acidosis, and short stature associated with a defect in renal potassium excretion. J Pediatr 85:355–358.

    PubMed  CAS  Google Scholar 

  98. Brautbar N, Levi J, Rosler A, Leitesdorf E, Djaldeti M, Epstein M, Kleeman CR (1978) Familial hyperkalemia, hypertension, and hyporeninemia with normal aldosterone levels: A tubular defect in potassium handling. Arch Intern Med 138:607–610.

    PubMed  CAS  Google Scholar 

  99. Lee MR, Ball SG, Thomas TH, Morgan DB (1979) Hypertension and hyperkalaemia responding to bendrofluazide. Q J Med 48:245–258.

    PubMed  CAS  Google Scholar 

  100. Schambelan M, Sebastian A, Rector FC, Jr (1981) Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): Role of increased renal chloride reabsorption. Kidney Int 19:716–727.

    PubMed  CAS  Google Scholar 

  101. Sanjad SA, Keenan BS, Hill LL (1983) Renal hypoprostaglandism, hypertension, and type IV renal tubular acidosis reversed by furosemide. Ann Intern Med 99:624–627.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schambelan, M., Sebastian, A. (1987). States of Aldosterone Deficiency or Pseudodeficiency. In: Cohen, M.P., Foà, P.P. (eds) Hormone Resistance and Other Endocrine Paradoxes. Endocrinology and Metabolism, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4758-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4758-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9143-5

  • Online ISBN: 978-1-4612-4758-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics