Skip to main content

Physiological Studies of Directional Hearing

  • Chapter
Directional Hearing

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

An important function of the auditory system is to locate the position of a sound source. Whereas functions such as pitch and intensity perception can be performed by one ear alone, the localization of sound depends heavily on comparisons between the acoustic inputs from the two ears. Binaural cues used for sound localization include interaural differences in level, time of arrival, and frequency spectrum of the sound. Interaural level differences are more commonly, though incorrectly (see Kuhn, 1977, and Behar, 1984), called interaural intensity differences (IIDs). Most investigations of binaural hearing have focused on the role of differences in interaural intensity and time in accordance with the duplex theory first postulated by Lord Rayleigh (1907). This theory states that IIDs resulting from the sound shadow cast by the head is the primary cue for localizing high-frequency tones, whereas interaural time differences (ITDs) between the arrival of the sound at the two ears are responsible for the localization of low-frequency tones. The basis for this distinction is best understood in terms of the relation between head size and the wavelength of the sound. For high-frequency signals, the wavelength is small compared with the size of the head, or interaural distance, and the head becomes an obstacle to the propagating sound wave. For laterally placed sounds the head attenuates the signal intensity at the distal ear, thereby creating an IID. At lower frequencies, where the wavelength is larger than the interaural distance, the head is acoustically transparent, and no IID is created. At these frequencies, ITDs are the most important cue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aitkin, L.M., Pettigrew, J.D., Calford, M.B., Phillips, S.C., Wise, L.Z. (1985). Representation of stimulus Azimuth by low-frequency neurons in the inferior colliculus of the cat. J. Neurophysiol. 53, 43–59.

    Article  CAS  Google Scholar 

  • Aitkin, L.M., Webster, W.R. (1972). Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in the ventral division. J. Neurophysiol. 35,365–380.

    Article  CAS  Google Scholar 

  • Altman, J.A. (1978). Sound Localization. Neurophysiological Mechanisms. Tonndorf, J. (ed.). pp. 1–188. Chicago: Beltone Institute for Hearing Research.

    Google Scholar 

  • Behar, A. (1984). Intensity and sound pressure level. J. Acoust. Soc. Am. 76, 632.

    Article  Google Scholar 

  • Benson, D.A., Teas, D.C. (1976). Single unit study of binaural interaction in the auditory cortex of the chinchilla. Brain Res. 103, 313–338.

    Article  CAS  Google Scholar 

  • Boudreau, J.C., Tsuchitani, C. (1968). Binaural interaction in the cat superior olive S segment. J. Neurophysiol. 31, 442–454.

    Article  CAS  Google Scholar 

  • Brugge, J.F. (1980). The neurophysiology of the central auditory and vestibular systems. In: Otolaryngology. Paparella, M.M., Shumrick, D.A., Meyerhoff, W.L., Side, A.B., (eds.). pp. 253–296. Philadelphia: W.B. Saunders.

    Google Scholar 

  • Brugge, J.F., Anderson, D.J., Aitkin, L.M. (1970). Response of neurons in the dorsal nucleus of the lateral lemniscus of the cat to binaural stimuli. J. Neurophysiol. 33, 441–458.

    Article  CAS  Google Scholar 

  • Brugge, J.F., Dubrovsky, L.M., Aitkin, L.M., Anderson, D.J. (1969). Sensitivity of single neurons in the auditory cortex of cat to binaural tonal stimulation: Effects of varying interaural time and intensity. J. Neurophysiol. 32,1005–1024.

    Article  CAS  Google Scholar 

  • Brugge, J.F., Geisler, C.D. (1978). Auditory mechanisms of the lower brainstem. Ann. Rev. Neurosci. 1, 363–394.

    Article  CAS  Google Scholar 

  • Brugge, J.F., Merzenich, M.M. (1973). Responses of neurons in the auditory cortex of the macaque monkey to monaural and binaural stimulation. J. Neurophysiol. 36,1138–1158.

    Article  CAS  Google Scholar 

  • Caird, D., Klinke, R. (1983). Processing of binaural stimuli by cat superior olivary complex neurons. Exp. Brain Res. 52, 385–399.

    Article  CAS  Google Scholar 

  • Chan, J.C.K., Yin, T.C.T. (1984). Interaural time sensitivity in the medial superior olive of the cat: comparisons with the inferior colliculus. Soc. Neurosci. Abstr. 10.844.

    Google Scholar 

  • Colburn, H.S., Durlach, N.I. (1978). Models of binaural interaction. In: Handbook of Perception. Vol. IV. Carterette, E.C., Friedman, M.P. (eds.). pp. 467–518. New York: Academic Press.

    Google Scholar 

  • Crow, G., Rupert, A.L., Moushegian, G. (1978). Phase-locking in monaural and binaural medullary neurons: implications for binaural phenomena. J. Acoust. Soc. Am. 64, 493–501.

    Article  CAS  Google Scholar 

  • Erulkar, S.D. (1972). Comparative aspects of spatial localization of sound. Physiol. Rev. 52, 237–360.

    Article  CAS  Google Scholar 

  • Geisler, C.D., Rhode, W.S., Hazelton, D.W. (1969). Response of inferior colliculus neurons in the cat to binaural acoustic stimuli having wide-band spectra. J. Neurophysiol. 32, 960–974.

    Article  CAS  Google Scholar 

  • Goldberg, J.M., Brown, P.B. (1968). Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J. Neurophysiol. 31, 639–656.

    Article  CAS  Google Scholar 

  • Goldberg, J.M., Brown, P.B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636.

    Article  CAS  Google Scholar 

  • Gordon, B.G. (1973). Receptive fields in deep layers of cat superior colliculus. J. Neurophysiol. 36, 157–178.

    Article  CAS  Google Scholar 

  • Guinan, J.J., Norris, B.E., Guinan, S.S. (1972). Single auditory units in the superior olivary complex II: location of unit categories and tonotopic organization. Int. J. Neuroscience 4, 147–66.

    Article  Google Scholar 

  • Hirsch, J. A., Chan, J.C.K., Yin, T.C.T. (1985). Responses of neurons in the cat’s superior colliculus to acoustic stimuli. I. Monaural and binaural response properties. J. Neurophysiol. 53, 726–745.

    Article  CAS  Google Scholar 

  • Imig, T.J., Adrian, H.O. (1977). Binaural columns in the primary field (AI) of the cat auditory cortex. Brain Res. 138, 241–257.

    Article  CAS  Google Scholar 

  • Irving, R., Harrison, J.M. (1967). The superior olivary complex and audition: A comparative study. J. Comp. Neurol. 130, 77–86.

    Article  CAS  Google Scholar 

  • Jay, M.F., Sparks, D.L. (1984). Auditory receptive fields in the primate superior colliculus shift with changes in eye position. Nature 309, 345–347.

    Article  CAS  Google Scholar 

  • Jeffress, L.A. (1948). A place theory of sound localization. J. Comp. Physiol. Psych. 41, 35–39.

    Article  CAS  Google Scholar 

  • Johnson, D.H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibres to single tones. J. Acoust. Soc. Am. 68, 1115–1122.

    Article  CAS  Google Scholar 

  • Keidel, W.D., Neff, W.D. (1974). Handbook of Sensory Physiology. Auditory System: Anatomy and Physiology. New York: Springer-Verlag.

    Google Scholar 

  • King, A.J., Palmer, A.R. (1983). Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: Distribution and response properties. J. Physiol. (Lond.) 342, 361–381.

    Article  CAS  Google Scholar 

  • Kitzes, L.M., Wrege, K.S., Cassady, J.M. (1980). Patterns of responses of cortical cells to binaural stimulation. J. Comp. Neurol. 192, 455–472.

    Article  CAS  Google Scholar 

  • Knudsen, E.I. (1982). Auditory and visual maps of space in the optic tectum of the owl. J. Neuroscience 2, 1177–1194.

    Article  CAS  Google Scholar 

  • Knudsen, E.I. and Konishi, M. (1978A). A neural map of auditory space in the owl Science, 200, 795–797.

    CAS  Google Scholar 

  • Knudsen, E.I., Konishi, M. (1978B). Space and frequency are represented separately in the auditory midbrain of the owl. J. Neurophysiol. 41, 870–884.

    Article  CAS  Google Scholar 

  • Knudsen, E.I., Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto alba). J. Comp. Physiol. 133, 13–21.

    Article  Google Scholar 

  • Kuhn, G.F. (1977). Model for the interaural time differences in the azimuthal plane. J. Acoust. Soc. Am. 62, 157–167.

    Article  Google Scholar 

  • Kuwada, S., Yin, T.C.T., (1983). Binaural interaction in low frequency neurons in inferior colliculus of the cat I: Effects of long interaural delays, intensity and repetition rate on the interaural delay function. J. Neurophysiol. 50, 981–999.

    Article  CAS  Google Scholar 

  • Kuwada, S., Yin, T.C.T., Syka, J., Buunen, T., Wickesberg, R.E. (1984). Binaural interaction in low frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. J. Neurophysiol. 51, 1306–1325.

    Article  CAS  Google Scholar 

  • Kuwada, S., Yin, T.C.T., Wickesberg, R.E. (1979). Responses of the cat inferior colliculus neurons to binaural beat stimuli: Possible mechanisms for sound localization. Science 206, 585–588.

    Article  Google Scholar 

  • Masterton, R.B., Imig, T.J. (1984). Neural mechanisms for sound localization. Ann. Rev. Physiol. 46, 275–287.

    Article  CAS  Google Scholar 

  • Masterton, R.B., Thompson, G.C., Bechtold, J.K., RoBards, M.J. (1975). Neuroanatomical basis of binaural phase-difference analysis for sound localization: A comparative study. J. Comp. Physiol. Psych. 89, 379–386.

    Article  CAS  Google Scholar 

  • Middlebrooks, J.C., Knudsen, E.I. (1984). A neural code for auditory space in the cat’s superior colliculus. J. Neurosci. 4, 2621–2634.

    Article  CAS  Google Scholar 

  • Middlebrooks, J.C., Pettigrew, J.D. (1981). Functional classes of neurons in the primary auditory cortex of the cat distinguished by sensitivity to sound location. J. Neurophysiol. 1, 107–120.

    CAS  Google Scholar 

  • Moiseff, A., Konishi, M. (1981). Neuronal and behavioral sensitivity to binaural time differences in the owl. J. Neuroscience. 1, 40–48.

    Article  CAS  Google Scholar 

  • Moiseff, A., Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J. Neurosci. 3, 2553–2562.

    Article  CAS  Google Scholar 

  • Moller, A.R. (1974). Responses of units in the cochlear nucleus to sinusoidally amplitude-modulated tones. Exp. Neurol. 45, 104–117.

    Article  Google Scholar 

  • Moore, D.R., Hutchings, M.E., Addison, P.D., Semple, M.N., Aitkin, L.M. (1984). Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. II. Stimulus intensity effects. Hear. Res. 13, 175–188.

    Article  CAS  Google Scholar 

  • Moushegian, G., Stillman, R.D., Rupert, A.L. (1971). Characteristic delays in the superior olive and inferior colliculus. In: Physiology of the Auditory System. Sachs, M.B. (ed.). pp. 245–254. Baltimore: National Education Consultants.

    Google Scholar 

  • Palmer, A.R., King, A.J. (1982). The representation of auditory space in the mammalian superior colliculus. Nature 299, 248–249.

    Article  CAS  Google Scholar 

  • Phillips, D.P., Calford, M.B., Pettigrew, J.D., Aitkin, L.M., Semple, M.N. (1982). Directionality of sound pressure transformation at the cat’s pinna. Hear. Res. 8,13–28.

    Article  CAS  Google Scholar 

  • Phillips, D.P., Irvine, D.R.F. (1981). Responses of single neurons in physiologically defined area Al of the cat cerebral cortex: Sensitivity to interaural intensity differences. Hear. Res. 4, 299–307.

    Article  CAS  Google Scholar 

  • Rayleigh, Lord, (Strutt, I.W.) (1907). On our perception of sound direction. Phil. Mag. 13, 214–232.

    Google Scholar 

  • Rees, A., Moller, A.R. (1983). Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear. Res. 10, 301–330.

    Article  CAS  Google Scholar 

  • Rose, J.E., Gross, N.B., Geisler, C.D., Hind, J.E. (1966). Some neural mechanisms in the inferior colliculus of the cat which may be relevant to the localization of a sound source. J. Neurophysiol. 29, 288–314.

    Article  CAS  Google Scholar 

  • Rosenzweig, M.R. (1961). Development of research on the physiological mechanisms of auditory localization. Psychol. Bull. 58, 376–389.

    Article  CAS  Google Scholar 

  • Roth, G.L., Kochhar, R.K., Hind, J.E. (1980). Interaural time differences: implications regarding the neurophysiology of sound localization. J. Acoust. Soc. Am. 68, 1643–1651.

    Article  CAS  Google Scholar 

  • Ryan, A.F., Miller, J.M., Pfingst, B E., Martin, G.K. (1984). Effects of reaction time performance on single-unit activity in the central auditory pathways of the rhesus macaque. J. Neurosci. 4, 298–308.

    Article  CAS  Google Scholar 

  • Schechter, P.B., J.A. Hirsch, T.C.T. Yin (1981). Auditory input to cells in the deep layers of the cat superior colliculus. Soc. Neurosci. Abstr. 7, 20.13.

    Google Scholar 

  • Semple, M.N., Aitkin, L.M., Pettigrew, J.D., Calford, M.B., Phillips, D.P. (1983). Spatial receptive field in the cat inferior colliculus. Hear. Res. 10, 203–215.

    Article  CAS  Google Scholar 

  • Sovijari, A.R.A., Hyvarinen, J. (1974). Auditory cortical neurons in the cat sensitive to the direction of sound source movement. Brain Res. 73, 455–471.

    Article  Google Scholar 

  • Stillman, R.D. (1971). Characteristic delay neurons in the inferior colliculus of the kangaroo rat. Exp. Neurol. 32, 404–412.

    Article  CAS  Google Scholar 

  • Stillman, R.D. (1972). Responses of high frequency inferior colliculus neurons to interaural intensity differences. Exp. Neurol. 36, 118–126.

    Article  CAS  Google Scholar 

  • Sujaku, Y., Kuwada, S., Yin, T.C.T. (1981). Binaural interaction in the cat inferior colliculus: comparison of the physiological data with a computer simulated model. In: Neuronal Mechanisms of Hearing. Syka, J., Aitkin, L. (eds.). pp. 233–238. New York: Plenum Press.

    Chapter  Google Scholar 

  • Sullivan, W.E., M. Konishi (1984). Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J. Neurosci. 4, 1787–1799.

    Article  CAS  Google Scholar 

  • Webster, W.R., Aitkin, L.M. (1975). Central auditory processing. In: Handbook of Psychobiology. Gazzaniga, M.S., Blakemore, C. (eds.). pp. 325–364. New York: Academic Press.

    Chapter  Google Scholar 

  • Wise, L.Z., D.R.F. Irvine (1983). Auditory response properties of neurons in deep layers of cat superior colliculus. J. Neurophysiol. 49, 674–685.

    Article  CAS  Google Scholar 

  • Yin, T.C.T., Chan, J.C.K. (1986). Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Functions of the Auditory System. Edelman, G.M., Gall, W.E. (eds.). New York: John Wiley & Sons. In press.

    Google Scholar 

  • Yin, T.C.T., Chan, J.C.K., Irvine, D.R.F. (1986). Effects of interaural time delays of noise stimuli on low frequency cells in the cat’s inferior colliculus. I. Responses to wideband noise. J. Neurophysiol. 55, 280–300.

    Article  CAS  Google Scholar 

  • Yin, T.C.T., Chan, J.C.K., Kuwada, S. (1983). Characteristic delays and their topographic distribution in the inferior colliculus of the cat. In: Mechanisms of Hearing. Webster, W.R. Aitkin, L.M. (eds.). Clayton, Victoria: Monash University Press.

    Google Scholar 

  • Yin, T.C.T., Hirsch, J. A., Chan, J.C.K. (1985). Responses of neurons in the cat’s superior colliculus to acoustic stimuli. II. A model of interaural intensity sensitivity. J. Neurophysiol. 53, 746–758.

    Article  CAS  Google Scholar 

  • Yin, T.C.T., Kuwada, S. (1983a). Binaural interaction in low frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J. Neurophysiol. 50, 1000–1019.

    Article  CAS  Google Scholar 

  • Yin, T.C.T., Kuwada, S. (1983b). Binaural interaction in low frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J. Neurophysiol. 50, 1020–1042.

    Article  CAS  Google Scholar 

  • Yin, T.C.T., Kuwada, S. (1984). Neuronal mechanisms of binaural interaction. In: Dynamic Aspects of Neocortical Function. Edelman, G.M., Cowan, W.C., Gall, W.E. (eds.). pp. 263–313. New York: John Wiley & Sons.

    Google Scholar 

  • Yin, T.C.T., Kuwada, S., Sujaku, Y. (1984). Interaural time sensitivity of high frequency neurons in the inferior colliculus. J. Acoust. Soc. Am. 76,1401–1410.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kuwada, S., Yin, T.C.T. (1987). Physiological Studies of Directional Hearing. In: Yost, W.A., Gourevitch, G. (eds) Directional Hearing. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4738-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4738-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9135-0

  • Online ISBN: 978-1-4612-4738-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics