Lateralization

  • William A. Yost
  • Ervin R. Hafter
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

In the real world sounds arrive at the two ears with interaural differences of time and intensity and with differences in the spectral pattern of information. George Kuhn, in Chapter 1, showed that these interaural variables can be complex. Wightman et al, in Chapter 2, showed that this complexity may be important for a listener’s ability to localize sounds in space. Presenting these stimuli over headphones allows for exact control of these variables. For instance, a pure-tone sound source in the free field generates both an interaural intensive and a temporal difference. Thus, it is difficult to vary one interaural parameter independently of the other. If the stimulus is delivered by headphones, the tone can be presented with an interaural temporal difference independent of the interaural intensive difference. Anyone who has listened to stimuli presented dichotically (see Table 3-1 for a discription of diotic, monotic, dichotic, etc) over headphones has noticed that the sound image appears to be “inside” the head rather than “out” in the environment. When binaural hearing is studied with headphones, the task is referred to as lateralization. For sounds presented externally to the listener. such as via a loudspeaker, the task is referred to as localization. In this chapter we describe some of the basicdata and theories that pertain to lateralization. The first section covers lateralization of simple stimuli, primarily sinusoids. The second section describes the situations in which the stimuli are more complex.

Keywords

Gall Digerent Stim 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Abel, S.M., Kunov, H. (1983). Lateralization based on interaural phase differences: Effects of frequency, amplitude, duration, and shape of rise/decay. J. Acoust. Soc. Am. 73, 955–961.PubMedCrossRefGoogle Scholar
  2. Bernstein, L.R., Trahiotis, C. (1983). Envelope based lateralization of low-frequency waveforms. J. Acoust. Soc. Am. 74, 585.Google Scholar
  3. Bernstein, L.R., Trahiotis, C. (1985). Lateralization of sinusoidally amplitude-modulated tones: Effects of spectral locus and temporal variation—J. Acoust. Soc. Am., 78, 514–523.PubMedCrossRefGoogle Scholar
  4. Blauert, J. (1983). Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge, MA: The MIT Press.Google Scholar
  5. Colburn, H.S., Durlach, W.I. (1978). Models of binaural interaction: In: Handbook of Perception, Vol. IV. Hearing. Carterette, E.C., Friedman, M.P. (eds.). New York: Academic Press.Google Scholar
  6. Domnitz, R H., Colburn, H.S. (1977). Lateral position and interaural discrimination. J. Acoust. Soc. Am. 61, 1586–1598.PubMedCrossRefGoogle Scholar
  7. Durlach, N.I., Colburn, H.S. (1978). Binaural phenomena. In: Handbook of Perception. Vol. IV. Hearing. Carterette, E.G., Friedman, M.P. (eds.). New York: Academic Press.Google Scholar
  8. Dye, R.H. and Baumann, J. (1984). The combination of interaural information across frequencies, J. Acoust. Soc. Am. 75, 588.CrossRefGoogle Scholar
  9. Feddersen, W.E., Sandel, T.T., Teas, D.C., Jeffress, L.A. (1955). Measurements of interaural time and intensity difference. J. Acoust. Soc. Am. 27, 1008.CrossRefGoogle Scholar
  10. Grantham, D. W. (1984). Interaural intensity discrimination: insensitivity at 1000 Hz. J. Acoust. Soc. Am. 75 (4), 1191–1194.PubMedCrossRefGoogle Scholar
  11. Green, D.M., Henning, G.W. (1969). Audition. In: Annual Review of Psychology. Vol. 20. pp. 105–128. Palo Alto, CA: Annual Reviews Inc.Google Scholar
  12. Green, D.M., Yost, W.A. (1975). Binaural Analysis. In: Handbook of sensory physiology (edited W. Keidel and D. Wineff). Springer-Verlag, Netherlands.Google Scholar
  13. Hafter, E.R. (1977). Lateralization model and the role of time-intensity trading in binaural masking: Can the data be explained by a time-only hypothesis? J. Acoust. Soc. Am. 62, 633–636.PubMedCrossRefGoogle Scholar
  14. Hafter, E.R. (1984). Spatial hearing and the duplex theory: How viable? In: Dynamic Aspects of Neocortical Function. Edelman, G.M., Gall, W.E., Cowan, W.M. (eds.). New York: Wiley.Google Scholar
  15. Hafter, E.R., Carrier, S.C. (1972). Binaural interaction in low-frequency stimuli: The inability to trade time and intensity completely. J. Acoust. Soc. Am. 51, 1852–1862.PubMedCrossRefGoogle Scholar
  16. Hafter, E.R., Dye, R.H. Jr. (1983). Detection of interaural differences of time in trains of high-frequency clicks as a function of interclick time interval and number. J. Acoust. Soc. Am. 73, 644–651.PubMedCrossRefGoogle Scholar
  17. Hafter, E.R., Dye, R.H., Nuetzel, J.M. (1980). Lateralization of high-frequency stimuli on the basis of time and intensity. In: Psychophysical, Physiological and Behavioral Studies in Hearing, van den Brink, G., Bilsen, F.A. (eds.). Delft, The Netherlands: Delft University Press.Google Scholar
  18. Hafter, E.R., Dye, R.H. Jr., Wenzel, E.W. (1983). Detection of interaural differences of intensity in trains of high-frequency clicks as a function of interclick interval and number. J. Acoust. Soc. Am. 75, 1708–1713.CrossRefGoogle Scholar
  19. Hafter, E.R., Jeffress, L.A. (1968). Two-image lateralization of tones and clicks. J. Acoust. Soc. Am. 44, 563–569.PubMedCrossRefGoogle Scholar
  20. Hafter, E.R., Wenzel, E. (1983). Lateralization of transients presented at high rates: site of the saturation effect. In: Hearing — Physiological Basis and Psychophysics. Klinke, R., Hartmann, R. (eds.). Berlin/Heidelberg: Springer-Verlag.Google Scholar
  21. Harris, C.G. (1960). Binaural interactions of impulsive stimuli and pure tones. J. Acoust. Soc. Am. 32, 685–692.CrossRefGoogle Scholar
  22. Henning, G.B, (1974). Detectability of interaural delay in high-frequency complex waveforms. J. Acoust. Soc. Am. 55, 84–90.PubMedCrossRefGoogle Scholar
  23. Henning, G.B. (1980). Some observations on the lateralization of complex waveforms. J. Acoust. Soc. Am. 68, 446–454.PubMedCrossRefGoogle Scholar
  24. Henning, G.B., Ashton, J, (1981). The effect of carrier and modulation frequency on lateralization based on interaural phase and interaural group delay. Hear. Res. 4, 185–194.PubMedCrossRefGoogle Scholar
  25. Hershkowitz, R.M., Durlach, N.I. (1969). Interaural time and amplitude jnd’ for a 500 Hz tone. J. Acoust. Soc. Am. 46, 1464–1467.PubMedCrossRefGoogle Scholar
  26. Houtgast, T., Plomp, R. (1968). Lateralization threshold of a signal in noise. J. Acoust. Soc. Am. 4, 807–812.CrossRefGoogle Scholar
  27. Jeffress, L.A. (1948). A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39.PubMedCrossRefGoogle Scholar
  28. Klumpp, R.G., Eady, H.R, (1956). Some measurement of interaural time difference thresholds. J. Acoust. Soc. Am. 28, 859–860.CrossRefGoogle Scholar
  29. Lamter, J.L. (1983). Stimulus characteristics and relative ear advantage: A new look at old data, J. Acoust. Soc. Am. 74, 1–17.CrossRefGoogle Scholar
  30. Leakey, D.M., Sayers, B. McA., Cherry, C. (1958). Binaural fusion of low-and high-frequency sounds. J. Acoust. Soc. Am. 30, 222–223.CrossRefGoogle Scholar
  31. Licklider, J.C.R. (1962). Auditory-process models. J. Acoust. Soc. Am. 34, 713.CrossRefGoogle Scholar
  32. McFadden, D.M. (1975). Masking and the Binaural System. In: The Nervous System, Vol. 3 (edited E.L. Eagles), Raven Press, New York.Google Scholar
  33. McFadden, D.M., Moffitt, C.M. (1977). Acoustic integration for lateralization at high frequencies. J. Acoust. Soc. Am. 61, 1604–1608.PubMedCrossRefGoogle Scholar
  34. McFadden, D., Pasanen, E. (1976). Lateralization at high frequencies based on interaural time differences. J. Acoust. Soc. Am. 59, 634–639.PubMedCrossRefGoogle Scholar
  35. Mills, A.W. (1960). Lateralization of high-frequency tones, J. Acoust. Soc. Am. 32, 132–134.CrossRefGoogle Scholar
  36. Molino, J. A. (1970). Simulation of the localization of distant sound sources by earphones. J. Acoust. Soc. Am. 48, 85.CrossRefGoogle Scholar
  37. Nuetzel, J.M., Hafter, E.R. (1976). Lateralization of complex waveforms: Effects of fine structure, amplitude, and duration. J. Acoust. Soc. Am. 60, 1339–1346.PubMedCrossRefGoogle Scholar
  38. Nuetzel, J.M., Hafter, E.R. (1981). Lateralization of complex waveforms: Spectral effects. J. Acoust. Soc. Am. 69, 1112–1118.CrossRefGoogle Scholar
  39. Osman, E. Personal communication.Google Scholar
  40. Raleigh, Lord (1907). On our perception of sound direction. Phil. Mag. 13, 214–232.Google Scholar
  41. Ricard, G.L., Hafter, E.R. (1973). Detection of interaural time differences in short-duration low-frequency tones. J. Acoust. Soc. Am. 53, 335(A).CrossRefGoogle Scholar
  42. Rowland, R.C. and Tobias, J.F, (1967). Interaural Intensity difference linen, J. Speech and Hearing Res. 10, 745–756.Google Scholar
  43. Sayers, B. (1964). Acoustic-image lateralization judgments with binaural tones. J. Acoust. Soc. Am. 36, 923.CrossRefGoogle Scholar
  44. Sayers, B., Cherry, E.C. (1957). Mechanism of binaural fusion in the hearing of speech. J. Acoust. Soc. Am. 29, 973–986.CrossRefGoogle Scholar
  45. Stern, R.M., Colburn, H.S. (1978). Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J. Acoust. Soc. Am. 64 (1), 127–140.PubMedCrossRefGoogle Scholar
  46. Stevens, S.S., Newman, E.B. (1936). The localization of actual sources of sound. Am. J. Psychol. 48, 297–306.CrossRefGoogle Scholar
  47. Tobias, J.V. (1972) Curious binaural phenomena in Foundations of Modern Auditory Theory (edited J.V. Tobias), Academic Press, New York.Google Scholar
  48. Tobias, J.V., Schubert, E.D. (1959). Effective onset duration of auditory stimuli. J. Acoust. Soc. Am. 31, 1595–1603.CrossRefGoogle Scholar
  49. Trahiotis, C., Kappant, H. (1978). Regression interpretation of differences in time-intensity trading ratios obtained in studies of laterality using method of adjustment. J. Acoust. Soc. Am. 64 (4), 1041–1048.PubMedCrossRefGoogle Scholar
  50. Watson, C.S., Mittler, B.T. (1965). Time-intensity equivalence in auditory lateralization: A graphical method. Psychon. Science 2, 219–220.Google Scholar
  51. Yost, W.A. (1974). Discrimination of interaural phase differences. J. Acoust. Soc. Am. 55, 1299–1303.PubMedCrossRefGoogle Scholar
  52. Yost, W.A. (1976). Lateralization of repeated filtered transients, J. Acoust. Soc. Am. 60, 178–181.PubMedCrossRefGoogle Scholar
  53. Yost, W.A. (1981). Lateral position of sinusoids presented with interaural intensive and temporal differences. J. Acoust. Soc. Am. 70 (2), 397–409.CrossRefGoogle Scholar
  54. Yost, W.A., Dye, R.H. (1987). Discrimination of Interaural Differences of Level as a function of Frequency, J. Acoust. Soc. Am., in press.Google Scholar
  55. Yost, W.A., Tanis, D.C., Nielsen, D.W., Bergert, B. (1975). Interaural time versus interaural intensity in a lateralization paradigm. Percept. Psychophys. 18, 433–440.CrossRefGoogle Scholar
  56. Yost, W.A., Wightman, F.L., Green, D.M. (1971). Lateralization of filtered clicks. J. Acoust. Soc. Am. 50, 1526–1531.PubMedCrossRefGoogle Scholar
  57. Young, I.L., Jr., Carhart, R. (1974). Time-intensity trading functions for pure tone and a high-frequency AM signal. J. Acoust. Soc. Am. 56, 605–611.PubMedCrossRefGoogle Scholar
  58. Zwislocki, J.J. and Feldman, R.S. (1956). Just noticeable dichotic phase difference, J. Acoust. Soc. Am 28, 152–154.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • William A. Yost
  • Ervin R. Hafter

There are no affiliations available

Personalised recommendations