Skip to main content

Part of the book series: ICASE NASA LaRC Series ((ICASE/NASA))

Abstract

One of the routes to transition consists of a cascade of successive instabilities. The first instability is usually called primary instability and it may consist of a two- or three-dimensional Tollmien Schlichting wave, a Gortler vortex, or a crossflow instability. The next two instabilities in the cascade are usually called secondary and tertiary instabilities. Two approaches of treating secondary instability are reviewed and compared. The first approach is a mutual interaction approach which accounts for the influence of the secondary instability on the primary instability. The second approach is usually called parametric instability. It does not account for this influence and leads to linear equations with periodic or quasi-periodic coefficients. Whereas the mutual interaction approach is not limited by the amplitude of the secondary instability, the parametric approach is limited to infinitesimal amplitudes of the secondary instability. The role of the Squire mode in the secondary instability on a flat plate is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Klebanoff, P. S. and Tidstrom, K. D., “Evaluation of amplified waves leading to transition in a boundary layer with zero pressure gradient”, NASA TN D-195, 1959.

    Google Scholar 

  • Klebanoff, P. S., Tidstrom, K. D. and Sargent, L. M. “The three-dimensional nature of boundary layer instability”, J. Fluid Mech. Vol. 12, 1962, 1–34.

    Article  ADS  MATH  Google Scholar 

  • Hama, F. R., “Boundary-layer transition induced by a vibrating ribbon on a Flat plate”, Proceeding - 1960 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, 1960, 92–105.

    Google Scholar 

  • Kachanov, Yu. S. and Levchenko, V. Ya., “Resonance interactions of disturbances in transition to turbulence in a boundary layer”, (in Russian), Preprint No. 10–82, I.T.A.M., USSR Academy of Sciences, Novosibirsk, 1982.

    Google Scholar 

  • Kachanov, Yu. S. and Levchenko, V. Ya., “The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer”, J. Fluid Mech., Vol. 138, 1984, 209–247.

    Article  ADS  Google Scholar 

  • Saric, W. S. and Thomas, A. S. W., “Experiments on the subharmonic route to turbulence in boundary layers”, Proceedings - IUTAM Symposium “Turbulence and Chaotic Phenomena in Fluids”, Kyota, Japan, 1983.

    Google Scholar 

  • Nishioka, M., Asai, M. and Iida, S., “An experimental investigation of secondary instabilities”, in Laminar-Turbulent Transition (eds. R. Eppler and H. Fasel), Springer-Verlag, 1980, 37–46.

    Google Scholar 

  • Nishioka, M., Iida, S. and Kanbayashi, S., “An experimental investigation of the subcritical instability in plane Poiseuille flow”, Proc. 10th Turbulence Symposium, Inst. Space Aeron. Sci., Tokyo Univ., 1978, 55–62.

    Google Scholar 

  • Aihara, Y., “Transition in an incompressible boundary layer along a concave wall”, Bull. Aero. Res. Inst., Tokyo Univ., Vol. 3, 1962, 195–240.

    Google Scholar 

  • Tai, I. and Komoda, H., “Boundary-layer transition in the presence of streamwise vortices”, J. Aerospace Sci., Vol. 29, 1962, 440–444.

    Google Scholar 

  • Tani, I. and Sakagami, J., “Boundary-layer instability at subsonic speeds”, Proc. Int. Council Aero. Sci., Third Congress, Stockholm, 1962, 391–403 (Spartan, Washington, D.C., 1964).

    Google Scholar 

  • Tani, I. and Aihara, Y., “Gortler vortices and boundary-layer transition”, ZAMP, Vol. 20, 1969, 609–618.

    Article  ADS  Google Scholar 

  • Wortman, F. X., “Visualization of transition”, J. Fluid Mech., Vol. 38, 1969, 473–480.

    Article  ADS  Google Scholar 

  • Orszag, S. A. and Patera, A. T., “Subcritical transition to turbulence in plane channel flows”, Phys. Rev. Lett, Vol. 45, 1980, 989–993.

    Article  ADS  Google Scholar 

  • Orszag, S. A. and Patera, A. T., “Secondary instability of wall-bounded shear flows”, J. Fluid Mech., Vol. 128, 1983, 347–385.

    Article  ADS  MATH  Google Scholar 

  • Benney, D. J. and Lin, C. C., “On the secondary motion induced by oscillations in a shear flow”, Phys. Fluids, Vol. 3, 1960, 656–657.

    Article  ADS  Google Scholar 

  • Benney, D. J., “A nonlinear theory for oscillation in a parallel flow”, J. Fluid Mech., Vol. 10, 1961, 209–236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benney, D. J., “Finite amplitude effects in an unstable laminar boundary layer”, Phys. Fluids, Vol. 7, 1964, 319–326.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Stuart, J. T., “On three-dimensional non-linear effects in the stability of parallel flows”, Adv. Aero. Sci., Vol. 3, 1961, 121–142.

    Google Scholar 

  • Antar, B. N. and Collins, F. G., “Numerical calculation of finite amplitude effects in unstable laminar boundary layers”, Phys. Fluids, Vol. 18, 1975, 289–297.

    Article  ADS  MATH  Google Scholar 

  • Herbert, T., “On finite amplitudes of periodic disturbances of the boundary layer along a flat Plate”, Deutsche Forschungs-und Versuchasanstalt für Luft- und Raumfahrt E. V., Freiburg im Breisgau, Rep. No. DLR-FB 74–53, 1974.

    Google Scholar 

  • Volodin, A. G. and Zel’man, M. B., “Pairwise nonlinear interactions of Tollmien-Schlichting waves in flows of the boundary-1ayer type”, Izv. Akad. Nauk SSR, Mekh. Zh. Gaza, No. 2, 1977, 33–37.

    Google Scholar 

  • Raetz, G. S., “A new theory of the cause of transition in fluid flows”, Norair Rep. NOR-59–383, 1959, Hawthorne, Calif.

    Google Scholar 

  • Raetz, G. S., “Current status of resonance theory of transition”, Norair Rep. NOR-64–111, 1964, Hawthorne, Calif.

    Google Scholar 

  • Stuart, J. T., “Nonlinear effects in hydrodynamic stability”, Proc. 10th Int. Cong. Appl. Mech. (Stressa 1960), Elsevier, 63–67.

    Google Scholar 

  • Lekoudis, S. G., “Resonant wave interactions on a swept wing”, AIAA J., Vol. 18, 1980, 122–124.

    Article  ADS  Google Scholar 

  • Craik, A. D., “Nonlinear resonant instability in boundary layers”, J. Fluid Mech., Vol. 50, 1971, 393–413.

    Article  ADS  MATH  Google Scholar 

  • Craik, A. D. D., “Second order resonance and subcritical instability”, Proc. Roy. Soc. London, Vol. A343, 1975, 351–362.

    MathSciNet  ADS  Google Scholar 

  • Lekoudis, S. G., “On the triad resonance in the boundary layer”, Lockheed- Georgia Company Rep. No. LG77ER0152, July 1977.

    Google Scholar 

  • Craik, A. D. D. and Adam, J. A., “Evolution in space and time of resonant wave triads. I. The pump-wave approximation”, Proc. Roy. Soc. London, Vol. A363, 1978, 243–255.

    MathSciNet  ADS  Google Scholar 

  • Craik, A. D. D., “Evolution in space and time of resonant wave triads. II. A class of exact solutions”, Proc. Roy. Soc. London, Vol. A363, 1978, 257–269.

    MathSciNet  ADS  Google Scholar 

  • Benney, D. J. and Gustavsson, L. H., “A new mechanism for linear and nonlinear hydrodynamic instability”, Stud. Appl. Math., Vol. 64, 1981, 185–209.

    MathSciNet  ADS  MATH  Google Scholar 

  • Nayfeh, A. H. and A. N. Bozatli, “Nonlinear wave interactions in boundary layers”, AIAA Paper No. 79–1496, 1979.

    Google Scholar 

  • Kelly, R. E., “On the stability of an inviscid shear layer which is periodic in space and time”, J. Fluid Mech., Vol. 27, 1967, 657–689.

    Article  ADS  MATH  Google Scholar 

  • Pierrehumbert R. T. and Widnall, S. E., “The two- and three-dimensional instabilities of a spatially periodic shear layer”, J. Fluid Mech., Vol. 114, 1982, 59–82.

    Article  ADS  MATH  Google Scholar 

  • Nayfeh, A. H. and Bozatli, A. N., “Secondary instability in boundary-layer flows”, Phys. Fluids, Vol. 22, 1979, 805–813.

    Article  ADS  MATH  Google Scholar 

  • Maseev, L. M., “Occurrence of three-dimensional perturbations in a boundary layer”, Fluid Dyn., Vol. 3, 1968, 23–24.

    Article  ADS  Google Scholar 

  • Herbert, T., “Three-dimensional phenomena in the transitional flat-plate boundary layer”, AIAA Paper-85–0489, 1985.

    Google Scholar 

  • Herbert, T., “Subharmonic three-dimensional disturbances in unstable plane shear flows”, AIAA Paper No. 83–1759, 1983.

    Google Scholar 

  • Herbert, T., “Analysis of the subharmonic route to transition in boundary layers”, AIAA Paper No. 84–0009, 1984.

    Google Scholar 

  • Bertolotti, F. P., “Temporal and spatial growth of subharmonic disturbances in Falkner-Skan flows”, VP I & SU, M.S. thesis, 1985.

    Google Scholar 

  • Nayfeh, A. H., “Three-dimensional spatial secondary instability in boundary- layer flows”, AIAA Paper No. 85–1697, 1985.

    Google Scholar 

  • Nayfeh, A. H., “Effect of streamwise vortices on TolImien-Schlichting waves”, J. Fluid Mech., Vol. 107, 1981, 441–453.

    Article  ADS  MATH  Google Scholar 

  • Herbert, T. and Morkovin, M. V., “Dialogue on bridging some gaps in stability and transition research”, in Laminar-Turbulent Transition, R. Eppler and H. Fasel (eds.), IUTAM Symposium, Stuttgart, Germany, Sept. 16–22, 1979, Springer-Verlag, New York, 47–72.

    Google Scholar 

  • Floryan, J. M. and Saric, W. S., “Wavelength selection and growth of Gortler vortices”, AIAA Paper No. 80–1376, 1980.

    Google Scholar 

  • Reed, H., “Disturbance-wave interactions in flows with crossflow”, AIAA Paper No. 85–0494, 1985.

    Google Scholar 

  • Nayfeh, A. H., Perturbation Methods, Wiley-Interscience, New York, 1973.

    MATH  Google Scholar 

  • Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley-Interscience, New York, 1979.

    MATH  Google Scholar 

  • Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley-Interscience, New York, 1981.

    MATH  Google Scholar 

  • Nayfeh, A. H. and Masad, J., “Subharmonic instability in the Blasius boundary layer”, in preparation.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this paper

Cite this paper

Nayfeh, A.H. (1987). On Secondary Instabilities in Boundary Layers. In: Dwoyer, D.L., Hussaini, M.Y. (eds) Stability of Time Dependent and Spatially Varying Flows. ICASE NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4724-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4724-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96472-0

  • Online ISBN: 978-1-4612-4724-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics