Skip to main content

Phototoxic Changes in the Retina

  • Chapter

Abstract

Throughout history, mankind has revered the sun as a source of power and well-being. The ancient Egyptians considered Ra, the sun god, as the supreme deity. The Greek sun god, Apollo, has a special place in medicine since his son Aesculapius, was considered the first physician, thus directly linking the power and the healing aspects of the sun. This common thread associating the sun with power and healing has been part of our civilization from time eternal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duke-Elder S, MacFaul P: Radiational injuries, in Duke-Elder S (ed). System of Ophthalmology, vol XIV, London, Henry Kimpton, Chap. X, 1972.

    Google Scholar 

  2. Fuchs E: Text Book of Ophthalmology. Philadelphia, JB Lippincott, p 705, 1923.

    Google Scholar 

  3. Meyer-Schwickerath G: Koagulation der Netzhaut mit Sonnenlicht. Ber Dtsch Ophthalmol Ges 55:256–259, 1950.

    Google Scholar 

  4. Friedman E, Kuwabara T: The retinal pigment epithelium. IV. The damaging effects of radiant energy. Arch Ophthalmol 80:265–279, 1968.

    PubMed  CAS  Google Scholar 

  5. Tso MOM, Fine BS, Zimmerman LE: Photic maculopathy produced by the indirect ophthalmoscope: I. Clinical and histopathologic Study. Am J Ophthalmol 73:686–699, 1972.

    CAS  Google Scholar 

  6. McDonald HR, Irvine AR: Light-induced maculopathy from the operating microscope in extracapsular cataract extraction and intraocular lens implantation. Ophthalmology 90:945–951, 1983.

    PubMed  CAS  Google Scholar 

  7. Irvine AR, Wood I, Morris BW: Retinal damage from the illumination of the operating microscope; an experimental study in pseudophakic monkeys. Arch Ophthalmol 102:1358–1365, 1984.

    PubMed  CAS  Google Scholar 

  8. Calkins JL, Hochheimer BF: Retinal light exposure from operating microscopes. Arch Ophthalmol 97:2363–2367, 1979.

    PubMed  CAS  Google Scholar 

  9. Jampol LM, Kraff MC, Sanders DR, et al: Near-UV radiation from the operating microscope and pseudophakic cystoid macular edema. Arch Ophthalmol 103:28–30, 1985.

    PubMed  CAS  Google Scholar 

  10. Kraff MC, Sanders DR, Jampol LM, Lieberman HL: Effect of an ultraviolet-filtering lens on cystoid macular edema. Ophthalmology 92:366–369, 1985.

    PubMed  CAS  Google Scholar 

  11. Weiter JJ, Finch ED: Paramagnetic species in cataractous human lenses. Nature 254:536–537, 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Weiter JJ, Subramanian S: Free radicals produced in human lenses by a biphotonic process. Invest Ophthalmol Vis Sci 17:869–873, 1978.

    PubMed  CAS  Google Scholar 

  13. Noell WK, Walker VS, Kang BS, Berman S: Retinal damage by light in rats. Invest Ophthalmology 5:450–473, 1966.

    CAS  Google Scholar 

  14. Robertson DM, Feldman RB: Photic retinopathy from the operating microscope. Am J Ophthalmol 101:561–569, 1986.

    PubMed  CAS  Google Scholar 

  15. Young RW: A theory of central retinal disease, in Sears ML (ed). New Directions in Ophthalmic Research. Yale University Press, New Haven, Conn, 1981.

    Google Scholar 

  16. Kooijman AC: Light distribution on the retina of a wide-angle theoretical eye. J Opt Soc Am 73:1544–1550, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Bedell HE, Katz LM: On the necessity of correcting peripheral target luminance for pupillary area. Am J Optom Physiol Opt 59:767–769, 1982.

    PubMed  CAS  Google Scholar 

  18. Weiter JJ, Schachar R, Ernest JT: Control of intraocular blood flow. I. Intraocular pressure. Invest Ophthalmol 12:327–331, 1973.

    PubMed  CAS  Google Scholar 

  19. Feke GT, Tagawa H, Deupree DM, Goger DG, Delori FC, Weiter JJ: Laser Doppler measurement of regional blood flow in the normal human retina. Invest Ophthalmol Vis Sci [ARVO Suppl]:224, 1985.

    Google Scholar 

  20. Weiter JJ: Studies on the retinal circulation and oxygen transport to the retina. PhD Thesis, University of Chicago, 1979.

    Google Scholar 

  21. Warburg O, Posener K, Negelin E: Uber den Stoflwechsel der Carcinomcell, Biochem Z 152:309, 1924.

    CAS  Google Scholar 

  22. Zuckerman R, Weiter JJ: Oxygen transport in the bullfrog retina. Exp Eye Res 30:117–127, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Weiter JJ, Zuckerman R: The influence of the photoreceptor-RPE complex on the inner retina. An explanation for the beneficial effects of photocoagulation. Ophthalmology 87:1133–1139, 1980.

    PubMed  CAS  Google Scholar 

  24. Tillis TN, Schmidt GJ, Weiter JJ: In vivo light and dark oxygen measurements under normoxic conditions in the avascular rabbit retina. Invest Ophthalmol Vis Sci [ARVO Suppl] 27:318, 1986.

    Google Scholar 

  25. Feke GT, Zuckerman R, Green GJ, Weiter JJ: Response of human retinal blood flow to light and dark. Invest Ophthalmol Vis Sci 24:136–141, 1983.

    PubMed  CAS  Google Scholar 

  26. Young RW: Biological Renewal. Applications to the eye. Trans Ophthalmol Soc UK 102:42–61, 1982.

    PubMed  Google Scholar 

  27. Wing GL, Blanchard GC, Weiter JJ: The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 17:601–607, 1978.

    PubMed  CAS  Google Scholar 

  28. Weiter JJ, Delori FC, Wing GL, Fitch KA: Retinal pigment epithelium lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:145–152, 1986.

    PubMed  CAS  Google Scholar 

  29. Lerman S: Radiant energy and the eye. Macmillan Publishing Co, New York, p 153, 1980.

    Google Scholar 

  30. Feeney-Burns L, Berman ER, Rothman H: Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783, 1980.

    PubMed  CAS  Google Scholar 

  31. Feeney-Burns L, Hilderbrand ES, Eldridge S: Aging human RPE: morphometric analysis of macular, equatorial and peripheral cells. Invest Ophthalmol Vis Sci 25:195, 1984.

    PubMed  CAS  Google Scholar 

  32. Katz ML, Robinson WG Jr: Age-related changes in the retinal pigment epithelium of pigmented rats. Exp Eye Res 38:137, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Weiter JJ, Fine BS: A histologic study of regional choroidal dystrophy. Am J Ophthalmol 83:741–750, 1977.

    PubMed  CAS  Google Scholar 

  34. Feeney-Burns L: The pigments of the retinal pigment epithelium, in Current Topics in Eye Research, vol 2, Zadunaisky JA, Davson H (eds). Academic Press, New York, pp 119–178, 1980.

    Google Scholar 

  35. Weiter JJ, Delori FC, Wing GL, Fitch KA: Relationship of senile macular degeneration to ocular pigmentation. Am J Ophthalmol 99:185–187, 1985.

    PubMed  CAS  Google Scholar 

  36. Garcia RI, Szabo G, Fitzpatrick TB: Molecular and cell biology of melanin, in The Retinal Pigment Epithelium. Zinn KM, Marmor MF (eds). Harvard University Press, Cambridge, MA, pp 124–147, 1979.

    Google Scholar 

  37. Rapp LM, Williams TP: The role of ocular pigmentation in protecting against retinal light damage. Vis Res 20:1127–1131, 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Krinsky NI: The protective function of carotenoid pigments, in Photophysiology, Giese AC (ed). vol 3. Academic Press, New York, pp 123–195, 1982.

    Google Scholar 

  39. Menon IA, Hakerman HF: Mechanisms of action of melanins. Br J Dermatol 97:109–112, 1977.

    Article  PubMed  CAS  Google Scholar 

  40. Feeney-Burns L, Berman ER: Oxygen toxicity: membrane damage by free radicals. Invest Ophthalmol 15:789, 1976.

    Google Scholar 

  41. Barr FE, Saloma JS, Buchele MJ: Melanin: the organizing molecule. Med Hypothesis 11:1, 1983.

    Article  CAS  Google Scholar 

  42. Hunold W, Malessa P: Spectrophotometric determination of the melanin pigmentation of the human ocular fundus in vivo. Ophthalmic Res 6:355, 1974.

    Article  Google Scholar 

  43. Wald G: Human vision and the spectrum. Science 101:653, 1945.

    Article  PubMed  CAS  Google Scholar 

  44. Malinow MR, Feeney-Burns L, Peterson LH, et al: Dietrelated macular anomalies in monkeys. Invest Ophthalmol Vis Sci 19:857–873, 1980.

    PubMed  CAS  Google Scholar 

  45. Snodderly DM, Brown PK, Delori FC, Auran JD: The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci 25:660–673, 1984.

    PubMed  CAS  Google Scholar 

  46. Reading VM, Weale RA: Macular pigment and chromatic aberration. J Opt Soc Am 64:231, 1974.

    Article  PubMed  CAS  Google Scholar 

  47. Lawwill T, Crockett RS, Currier G: The nature of chronic light damage to the retina, in Williams TP, Baker BN (eds). The effects of constant light on visual processes. Plenum Press, New York, pp 161–177, 1980.

    Google Scholar 

  48. Bone RA, Sparrock JMB: Comparison of macular pigment densities in human eyes. Vision Res 11:1057, 1971.

    Article  PubMed  CAS  Google Scholar 

  49. Hayes KC: Retinal degeneration in monkeys induced by deficiencies of vitamin E or A. Invest Ophthalmol 13:499–510, 1974.

    PubMed  CAS  Google Scholar 

  50. Farnsworth CC, Dratz EA: Oxidative damage of retinal rod outer segment membranes and the role of vitamin E. Biochem Biophys Acta 443:556–570, 1976.

    Article  PubMed  CAS  Google Scholar 

  51. Katz ML, Parker KR, Handelman GJ, Barnel TL, Dratz EA: Effects of antioxidant nutrient deficiency on the retina and retinal pigment epithelium of albino rats: a light and electron microscopic study. Exp Eye Res 34:329–369, 1982.

    Article  Google Scholar 

  52. Weiter JJ, Dratz EA, Fitch K, Handelman G: Role of selenium nutrition in senile macular degeneration. Invest Ophthalmol Vis Sci 26[ARVO Suppl]:58, 1985. (abstract).

    Google Scholar 

  53. Tso MOM, La Piana FG: The human fovea after sungazing, Trans Am Acad Ophthalmol Otolaryngol 79:788, 1975.

    Google Scholar 

  54. Hamm WT, Mueller HA, Ruffolo JJ, Guerry D: Solar retinopathy as a function of wavelength: Its significance for protective eyewear, in the effects of constant light on visual processes. Williams TP, Baker BN (eds). Plenum Press, New York, pp 319–346, 1980.

    Google Scholar 

  55. Cain CP, Welch AJ: Measured and predicted laser-induced temperatue rises in the rabbit fundus. Invest Ophthalmol 13:60–70, 1974.

    PubMed  CAS  Google Scholar 

  56. Hogan MJ, Alvarado JA, Weddell JE: Histology of the human eye. An Atlas and Textbook. WB Saunders Co, Philadelphia, p 422, 1971.

    Google Scholar 

  57. Kahn HA, Moorhead HB: Statistics on blindness in the model reporting area. Department of Health, Education and Welfare, Publication No. (NIH) 73–427 (1969–1970).

    Google Scholar 

  58. Burns RP, Feeney-Burns L: Clinico-morphologic correlations of drusen of Bruch s membrane. Trans Am Ophthalmol Soc 78:206–225, 1980.

    PubMed  CAS  Google Scholar 

  59. Weiter JJ, Jalkh A, Trempe C, Pruett R: Management of retinal pigment epithelial detachment in senile macular degeneration, in Modern Concepts in Vitreo-Retinal Diseases, Adolphe Neetens MD (ed). University of Antwerp UIA Press, pp 119–124, 1985.

    Google Scholar 

  60. Tucker MA, Shields JA, et al: Sunlight exposure as risk factor for intraocular malignant melanoma. N Engl J Med 313:789–792, 1985.

    Article  PubMed  CAS  Google Scholar 

  61. Lew RA, Sober AJ: Sun exposure habits in patients with cutaneous melanoma: a case study. J Dermatol Surg Oncol 9:98–106, 1983.

    Google Scholar 

  62. Weiter JJ, Delori FC: An explanation for the “Bull’s Eye” macular lesion. Invest Ophthalmol Vis Sci [ARVO Suppl] 27:336, 1986.

    Google Scholar 

  63. Terry TL: Extreme prematurity and fibroplastic overgrowth of persistent vascular sheath behind each crystalline lens. I. Preliminary report. Am J Ophthalmol 25:203, 1942.

    Google Scholar 

  64. Owens WC, Owens EU: Retrolental fibroplasia in premature infants. II. Studies on the prophylaxis of the disease: the use of alpha tocopheryl acetate. Am J Ophthalmol 32:1631–1637, 1949.

    PubMed  CAS  Google Scholar 

  65. Kinsey VE, Zacharias L: Retrolental fibroplasia: incidence in different localities in recent years and a correlation of the incidence with treatment given the infants. JAMA 139:572–578, 149.

    Google Scholar 

  66. Campbell K: Intensive oxygen therapy as a possible cause of retrolental fibroplasia: a clinical approach. Med J Aust 2:48–50, 1951.

    PubMed  CAS  Google Scholar 

  67. Pätz A, Hocck LE, De LaCruz E: Studies on the effect of high oxygen administration in retrolental fibroplasia. I. Nursery observations. Am J Ophthalmol 35:1248–1253, 1952.

    PubMed  Google Scholar 

  68. Ashton N, Ward B, Sergell G: role of oxygen in the genesis of retrolental fibroplasia: a preliminary report. Br J Ophthalmol 37:513–520, 1953.

    Article  PubMed  CAS  Google Scholar 

  69. Kinsey VE, Hemphill FM: Etiology of retrolental fibroplasia and preliminary report of cooperative study of retrolental fibroplasia. Trans Am Acad Ophthalmol Otolaryngology 59:15–24, 1955.

    CAS  Google Scholar 

  70. Weiter JJ, Zuckerman R: The influence of the photoreceptor—RPE complex on the inner retina: an explanation for the beneficial effects of photocoagulation. Ophthalmology 87:1133–1139, 1980.

    PubMed  CAS  Google Scholar 

  71. Weiter JJ, Zuckerman R, Schepens CL: A model for the pathogenesis of retrolental fibroplasia based on the metabolic control of blood vessel development. Ophthalmol Surg 13:1013–1017, 1982.

    CAS  Google Scholar 

  72. Ashton N: Oxygen and the growth and development of retinal vessels, in Kimura SJ, Coygill WN (eds). Vascular Complications of Diabetes Mellitus. CV Mosby, St Louis, pp 3–32, 1967.

    Google Scholar 

  73. Crapo JD, McCord JM: Oxygen-induced changes in pulmonary superoxide dismutase assayed by antibody titrations. Am J Physiol 231:1196–1203. 1976.

    PubMed  CAS  Google Scholar 

  74. Hittner HU, Godio LB, Rudolph AJ, et al: Retrolental fibroplasia: effect of vitamin E in a double-blind clinical study of preterm infants. N Engl J Med 305:1365–1371, 1981.

    Article  PubMed  CAS  Google Scholar 

  75. Weiter JJ: Retrolental fibroplasia: an unresolved problem. N Engl J Med 305:1404–1406, 1981.

    Article  PubMed  CAS  Google Scholar 

  76. Glass P, Avery G, et al: Effect of bright light in the hospital nursery on the incidence of retinopathy of prematurity. N Engl J Med 313:401–404, 1985.

    Article  PubMed  CAS  Google Scholar 

  77. Reeser FH, Aaberg TM: In Physiology of the Human Eye and Visual System, Records RE (ed). Harper and Row, Hagerstown, pp 261–295, 1979.

    Google Scholar 

  78. Balays EA: In Chemistry and Molecular Biology of the Intercellular Matrix, Balays EA (ed). vol 1. Academic Press, New York, p 293, 1970.

    Google Scholar 

  79. Andley UP, Chakrabarti B: Role of singlet oxygen in the degradation of hyaluronic acid. Biochem Biophysic Res Comm 115:894–901, 1983.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Weiter, J. (1987). Phototoxic Changes in the Retina. In: Miller, D. (eds) Clinical Light Damage to the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4704-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4704-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9122-0

  • Online ISBN: 978-1-4612-4704-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics