Skip to main content

Perspective on Damage to Angle Structures

  • Chapter
Clinical Light Damage to the Eye

Abstract

The eye is an organ of light. The functional study of the tissues of the optic axis is long established. Our understanding of the refraction of light by cornea, aqueous humor, lens, and vitreous can be traced from Al Hazan to the modern focus in Von Helmholtz.1 Insight into the transduction of light into neural impulse began last century with the studies of Young2 and continues today, the quest now being nothing less than the understanding of vision itself. It has taken longer for the side effects of light to attract attention, but as this book testifies, this is now a very active field, with many publications on light-induced damage to cornea, lens, and retina. But away from the excitement of the optic axis, in the quiet and shaded recesses of the chamber angle, is light of any consequence? The purpose of this chapter is to explore this possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duke-Elder S, Abrams D: Ophthalmic optics and refraction, in System of Ophthalmology, vol 5, Duke-Elder S (ed). CV Mosby Co, St. Louis, pp 3–23, 1970.

    Google Scholar 

  2. Duke-Elder S, Gloster J: Physiology of the eye in System of ophthalmology, vol 4, Duke-Elder (ed). CV Mosby Co, St. Louis, pp 435–446, 1968.

    Google Scholar 

  3. Kopeiko LG, Koretskaya YM, Mitkokh DI, Chentsova OB: Spectral characteristics of the eyeball coat. Vestn Oftalmol 1:46–49, 1979.

    PubMed  Google Scholar 

  4. Spillman L: Density, light scatter, and spectral transmission of a scarred human cornea. Albrecht Von Graefes Arch Klin Exp Ophthalmol 184:278–286, 1972.

    Article  Google Scholar 

  5. Varma SD, Chand D, Sharma YR, Kuck JF Jr, Richards RD: Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3:35–57, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Pirie A: Glutathione peroxidase in lens and a source of hydrogen peroxide in aqueous humour. Biochem J 96:244–253, 1965.

    PubMed  CAS  Google Scholar 

  7. Scarpa M, Stevanato R, Viglino P, Rigo A: Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase. J Biol Chem 258:6695–6697, 1983.

    PubMed  CAS  Google Scholar 

  8. Hill HAO: The chemistry of dioxygen and its reduction products, in Oxygen Free radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 5–17, 1979.

    Google Scholar 

  9. Giblin FJ, McCready JP, Kodama T, Reddy VN: A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Exp Eye Res 38:87–93, 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Spector A, Garner WH: Hydrogen peroxide and human cataract. Exp Eye Res 33:673–681, 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Som S, Raha C, Chatterjee IB: Ascorbic acid: a scavenger of superoxide radical. Acta Vitaminol Enzymol 5:243–250, 1983.

    PubMed  CAS  Google Scholar 

  12. Rowley DA, Halliwell B: Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction? Arch Biochem Biophys 225:279–284, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Rowley DA, Halliwell B: Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease. Clin Sci 64:649–653, 1983.

    PubMed  CAS  Google Scholar 

  14. Wong SF, Halliwell B, Richmond R, Skowroneck WR: The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J Inorg Biochem 14:127–134, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Varma SD, Srivastava VK, Richards RD: Photoperoxidation in lens and cataract formation: preventive role of superoxide dismutase, catalase and vitamin C. Ophthalmic Res 14:167–175, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Winterbourn CO. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem J 198:125–131, 1981.

    PubMed  CAS  Google Scholar 

  17. Varma SD, Richards RD, Bolton T, Rice D: Mechanism of hydrogen peroxide damage to the lens in vitro. Invest Ophthalmol Vis Sci 26[Suppl]:295, 1985.

    Google Scholar 

  18. Willson RL: Hydroxyl radicals and biological damage in vitro: what relevance in vivo? in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 19–42, 1979.

    Google Scholar 

  19. Matsuda H, Giblin FJ, Reddy VN: The effect of x-irradiation on cation transport in rabbit lens. Exp Eye Res 33:253–265, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Bhuyan KC, Bhuyan DK: Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-lH-l,2,4-triazole on catalase and glutathione peroxidase of rabbit eye. Biochim Biophys Acta 497:641–651, 1977.

    PubMed  CAS  Google Scholar 

  21. Reiss GR, Werness PG, Brubaker RF: Aqueous ascorbic acid levels in diurnal birds. Invest Ophthalmol Vis Sci 26[Suppl]:101, 1985.

    Google Scholar 

  22. Cotlier E, Panahbarhagh H, Obara Y: Lipid hydroperoxide formation by human aqueous humor, by cataracts, and in diabetic rabbits. Inv Ophthalmol Vis Sci 26[Suppl]:295, 1985.

    Google Scholar 

  23. Fridovich I: Chairman’s introduction, in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 1–4, 1979.

    Google Scholar 

  24. Sarna T, Duleba A, Korytowski W, Swartz H: Interaction of melanin with oxygen. Arch Biochem Biophys 200:140–148, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Fridovich I: Superoxide dismutases: defence against endogenous superoxide radical, in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 77–93, 1979.

    Google Scholar 

  26. Flohe: Glutathione peroxidase: fact and fiction, in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 95–122, 1979.

    Google Scholar 

  27. Segal AW, Allison AC: Oxygen consumption by stimulated human neutrophils, in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 205–223, 1979.

    Google Scholar 

  28. Roos D, Weening RS: Defects in the oxidative killing of microorganisms by phagocytic leukocytes, in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 225–262, 1979.

    Google Scholar 

  29. Rosen GM, Freeman BA: Detection of superoxide generated by endothelial cells. Proc Natl Acad Sci USA 81:7269–7273, 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS: Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 61:1161–1167, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss SJ, LoBuglio AF: Phagocyte-generated oxygen metabolites and cellular injury. Lab Invest 47:5–18, 1982.

    PubMed  CAS  Google Scholar 

  32. Steinberg H, Greenwald RA, Sciubba J, Das DK: The effect of oxygen-derived free radicals on pulmonary endothelial cell function in the isolated perfused rat lung. Exp Lung Res 3:163–173, 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Refojo MJ: Permeation of water through some hydrogels. J Appl Polymer Sci 9:3817–3426, 1965.

    Google Scholar 

  34. Epstein DL, Hashimoto JM, Anderson PJ, Grant WM: Effect of iodoacetamide perfusion on outflow facility and metabolism of the trabecular meshwork. Invest Ophthalmol Vis Sci 20:625–631, 1981.

    PubMed  CAS  Google Scholar 

  35. Epstein DL, Patterson MM, Rivers SC, Anderson PJ: N-ethylmaleimide increases the facility of aqueous outflow of excised monkey eyes. Invest Ophthalmol Vis Sci 22:752–756, 1982.

    PubMed  CAS  Google Scholar 

  36. Lindenmayer JM, Kahn MG, Hertzmark E, Epstein DL: Morphology and function of the aqueous outflow system in monkey eyes perfused with sulfhydryl reagents. Invest Ophthalmol Vis Sci 24:710–717, 1983.

    PubMed  CAS  Google Scholar 

  37. Freddo TF, Patterson MM, Scott DR, Epstein DL: Influence of mercurial sulfhydryl agents on aqueous outflow pathways in enucleated eyes. Invest Ophthalmol Vis Sci 25:278–285, 1984.

    PubMed  CAS  Google Scholar 

  38. Kahn MG, Giblin FG, Epstein DL: Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility. Invest Ophthalmol Vis Sci 24:1283–1287, 1983.

    PubMed  CAS  Google Scholar 

  39. Chylack LT Jr: Mechanisms of senile cataract formation. Ophthalmology 91:596–602, 1984.

    PubMed  Google Scholar 

  40. Megaw JM: Glutathione and ocular photobiology. Curr Eye Res 3:83–87, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Bhuyan KC, Bhuyan DK: Molecular mechanism of cataractogenesis: III. Toxic metabolites of oxygen as initiators of lipid peroxidation and cataract. Curr Eye Res 3:67–81, 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Barany EH: In vitro studies of the resistance to flow through the angle of the anterior chamber. Acta Soc Med Upsaliensis 59:260–276, 1953.

    Google Scholar 

  43. Van Buskirk EM, Grant WM: Influence of temperature and the question of involvement of cellular metabolism in aqueous outflow. Am J Ophthalmol 77:565–572, 1974.

    Google Scholar 

  44. Kamm RD, Ethier CR, Freddo TF, Johnson MC, Epstein DL: The influence of changes in juxtacanalicular meshwork morphology on aqueous outflow resistance. Invest Ophthalmol Vis Sci 26[Suppl]:5, 1985.

    Google Scholar 

  45. Jacob HS, and Jandl JH: Effects of sulfhydryl inhibition on red blood cells: I. Mechanism of hemolysis. J Clin Invest 41:779–792, 1962.

    Article  PubMed  CAS  Google Scholar 

  46. Penttila A, Trump BF: Studies on the modification of the cellular response to injury: III. Electron microscopic studies on the protective effect of acidosis on p-chloromecuribenzene sulfonic acid-(PCMBS) induced injury of Ehrlich ascites tumor cells. Virchows Arch B Cell Path 18:17–34, 1975.

    CAS  Google Scholar 

  47. Sahaphong S, Trump BF: Studies of cellular injury in isolated kidney tubes of the flounder: V. Effects of inhibiting sulfhydryl groups of plasma membrane with the organic mercurials PCMB (parachlorome-curibenzoate) and PC MBS (parachloromecuribenzene sulfonate). Am J Pathol 63:277–298, 1971.

    PubMed  CAS  Google Scholar 

  48. Polansky JR, Wood I, Maglio M, Addison J, Alvarado JA, Bhuyan KC, Bhuyan DK, Podos SM: Peroxide damage to human trabecular cells: a possible model for morphologic alterations in aging and glaucoma. Invest Ophthalmol Vis Sci 25[Suppl]:122, 1984.

    Google Scholar 

  49. Scott DR, Karageuzian LN, Anderson PJ, Epstein DL: Glutathione peroxidase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 25:599–602, 1984.

    PubMed  CAS  Google Scholar 

  50. Weiss HS, Karageuzian LN, Anderson PJ, Epstein DL: Glutathione reductase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 25[Suppl]:206, 1984.

    Google Scholar 

  51. Nguyen KPV, Weiss H, Karageuzian LN, Anderson PJ, Epstein DL: Glutathione reducatase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 26:887–890, 1985.

    PubMed  CAS  Google Scholar 

  52. Anderson PJ, Nguyen KPV, Lee DA, Epstein DL: Glucose 6-phosphate DH of calf trabecular meshwork. Invest Ophthalmol Vis Sci 26[Suppl]:229, 1985.

    Google Scholar 

  53. Williamson DH, Brosnan JT: Concentration of metabolites in animal tissues, in Methods of Enzymatic Analysis, vol 4, Bergmeyer HU (ed). Academic Press, New York, pp 2266–2302, 1974.

    Google Scholar 

  54. Nguyen K, Lee DA, Anderson PJ, Epstein DL: Glucose 6-phosphate dehydrogenase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 27:992–997, 1986.

    PubMed  CAS  Google Scholar 

  55. Freedman SF, Anderson PJ, Epstein DL: Superoxide dismutase and catalase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 26:1330–1335, 1985.

    PubMed  CAS  Google Scholar 

  56. Chance B, Sies H, Boveris A: Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–603, 1979.

    PubMed  CAS  Google Scholar 

  57. Harley JD, Robin H, Menser MA, Hertzberg R: Cataracts in G6PD deficiency. Br Med J 1:421, 1966.

    Article  Google Scholar 

  58. Alvarado J, Murphy C, Polansky J, Juster R: Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 21: 714–727, 1981.

    PubMed  CAS  Google Scholar 

  59. Leibowitz BE, Siegel BV: Aspects of free radical reactions in biological systems: aging. J Gerontol 35:45–56, 1980.

    Google Scholar 

  60. Zimmermann R, Flohe L, Weser U, and Hartmann H-J: Inhibition of lipid peroxidation in isolated inner membrane of rat liver mitochondria by superoxide dismutase. FEBS Lett 29:117–120, 1973.

    Article  PubMed  CAS  Google Scholar 

  61. Garner MH, Spector A: Selective oxidation of cysteine and methionine in normal and senile eataractous lenses. Proc Natl Acad Sci USA 77:1274–1277, 1980.

    Article  PubMed  CAS  Google Scholar 

  62. Garner MH, Garner WH, Spector A: Kinetic cooperativity change after H2O2 modification of (Na,K)-ATPase. J Biol Chem 259:7712–7718, 1984.

    PubMed  CAS  Google Scholar 

  63. Garner WH, Garner MH, Spector A: H2O2-induced uncoupling of bovine lens Na+, K+-ATPase. Proc Natl Acad Sci USA 80:2044–2088, 1983.

    Article  PubMed  CAS  Google Scholar 

  64. Ager A, Gordon JL: Differential effects of hydrogen peroxide on indices of endothelial cell function. J Exp Med 159:592–603, 1984.

    Article  PubMed  CAS  Google Scholar 

  65. Anderson EI, Wright DD: Effects of S-methyl glutathione, S-methyl cysteine, and the concentration of oxidized glutathione on transendothelial fluid transport. Invest Ophthalmol Vis Sci 19:68–686, 1980.

    Google Scholar 

  66. Tripathi RC, Tripathi BJ, Spaeth G: Role of sialated glycoproteins in the aqueous outflow pathway. Invest Ophthalmol Vis Sci 26[Suppl]:110, 1985.

    Google Scholar 

  67. Perkowski SZ, Havill AM, Flynn JT, Gee MH: Role of intrapulmonary release of eiconsanoids and superoxide anion as mediators of pulmonary dysfunction and endothelial injury in sheep with intermittent complement activation. Cir Res 53:574–583, 1983.

    CAS  Google Scholar 

  68. Mittag T: Role of oxygen radicals in ocular inflammation and cellular damage. Exp Eye Res 39:759–769, 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Grant WM: Glaucoma due to intraocular inflammation, in Glaucoma, Chandler PA, Grant WM (eds). Lea and Febiger, Philadelphia, pp 236–257, 1979.

    Google Scholar 

  70. Sery TW, Petrillo R: Superoxide anion radical as an indirect mediator in ocular inflammatory disease. Curr Eye Res 3:243–352, 1984.

    Article  PubMed  CAS  Google Scholar 

  71. McCord JM, Wong K: Phagocyte produced free radicals: roles in cytotoxicity and inflammation, in Oxygen Free Radicals and Tissue Damage, Fitzsimons DW (ed). Excerpta Medica, Amsterdam, pp 343–360, 1979.

    Google Scholar 

  72. Polansky JR, Wood IS, Maglio MT, Alvarado JA: Trabecular meshwork cell culture in glaucoma research: Evaluation of biological activity and structural properties of human trabecular cells in vitro. Ophthalmology 91:580–595, 1984.

    PubMed  CAS  Google Scholar 

  73. Sherwood M, Richardson TM: Evidence for in vivo phagocytosis by trabecular endothelial cells. Inv Ophthalmol Vis Sci 19[Suppl]:66, 1980.

    Google Scholar 

  74. Sherwood M, Richardson TM: Kinetics of the phagocytic process in the trabecular meshwork of cats and monkeys. Inv Ophthalmol Vis Sci 20[Suppl]:65, 1981.

    Google Scholar 

  75. Bill A: The drainage of aqueous humor. Invest Ophthalmol Vis Sci 14:1–3, 1975.

    CAS  Google Scholar 

  76. Zink HA, Palmberg PF, Sugar A, Sugar HS, Cantrill HL, Becker B, Bigger JF: Comparison of in vitro corticosteroid response in pigmentary glaucoma and primary open angle glaucoma. Am J Ophthalmol 80:478–484, 1975.

    PubMed  CAS  Google Scholar 

  77. Lowry OH, Passonneau JV: A flexible system for enzymatic analysis. Academic Press, New York, 1974.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Anderson, P.J., Epstein, D.L. (1987). Perspective on Damage to Angle Structures. In: Miller, D. (eds) Clinical Light Damage to the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4704-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4704-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9122-0

  • Online ISBN: 978-1-4612-4704-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics