Skip to main content

Light-Induced Changes in Ocular Tissues

  • Chapter

Abstract

The eye is the only organ or tissue in the body (aside from the skin) that is particularly sensitive to the non-ionizing wavelengths of optical radiation (wavelengths longer than 280 nm) normally present in our environment. In addition to infrared and visible radiation, we are constantly exposed to ultraviolet (UV) radiation (solar and man-made) throughout life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lerman S: Radiant Energy and the Eye, Chapters 1–3, MacMillan Publishing Company, New York, 1980.

    Google Scholar 

  2. Kurzel RB, Wolbarsht ML, Yamanashi BS: UV radiation effects on the human eye. Photochem Photobiol Rev 2:133–167, 1977.

    CAS  Google Scholar 

  3. Lerman S, Tan TT, Louis D, Hollander M: Anomalous absorption of lens proteins due to a fluorogen. Ophthalmic Res 1:338–343, 1970.

    Article  CAS  Google Scholar 

  4. Zigman S: Eye lens color formation and function. Science 171:807–809, 1971.

    Article  PubMed  CAS  Google Scholar 

  5. Lerman S: Lens proteins and fluorescence, Isr J Med Sci 8:1583–1589, 1972.

    PubMed  CAS  Google Scholar 

  6. Pirie A: Effect of sunlight on proteins of the lens, in Bellows J (ed): Contemporary Ophthalmology, Williams and Wilkins, Baltimore, pp 484–501, 1972.

    Google Scholar 

  7. Satoh K, Bando M, and Nakajima A: Fluorescence in human lens. Exp Eye Res 16:167–172, 1973.

    Article  CAS  Google Scholar 

  8. Augusteyn RC: Human lens albuminoid. Jap J Ophthalmol 18:127–134, 1974.

    CAS  Google Scholar 

  9. Dilley KJ, Pirie A: Changes to the proteins of the human lens nucleus in cataract. Exp Eye Res 19:59–72, 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Augusteyn R: Distribution of fluorescence in the human cataractous lens. Ophthalmic Res 7:217–224, 1975.

    Article  Google Scholar 

  11. Spector A, Roy O, Stauffer J: Isolation and characterization of an age-dependent polypeptide from human lens with non-tryptophan fluorescence. Exp Eye Res 21:9–24, 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Bando M, Nakajima A, Satoh K: Coloration of human lens protein, Exp Eye Res 20:489–492, 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Lerman S: Lens fluorescence in aging and cataract formation. Doc Ophthalmol Proc Series 8:241–260, 1976.

    CAS  Google Scholar 

  14. Lerman S, Borkman RF: Spectroscopic evaluation and classification of the normal aging and cataractous lens. Ophthalmic Res 8:335–353, 1976.

    Article  Google Scholar 

  15. Lerman S, Borkman RF: Photochemistry and lens aging, in von Hahn HP (ed): Interdisciplinary Topics in Gerontology: Gerontologi cal Aspects of Eye Research, vol 13, S Karger, Basel, pp 154–183, 1978.

    Google Scholar 

  16. Lerman S, Kuck JF, Borkman R, Saker E: Induction, acceleration and prevention (in vitro) of an aging parameter in the ocular lens. Ophthalmic Res 8:213–226, 1976.

    Article  CAS  Google Scholar 

  17. Zigman S, Datiler M, Torozynshi E: Sunlight and human cataract. Invest Ophthalmol Vis Sci 18:462–467, 1979.

    PubMed  CAS  Google Scholar 

  18. Castineiras SG, Dillon J, Spector A: Effects of reduction on absorp tion and fluorescence of human lens proteins. Exp Eye Res 29:573–575, 1979.

    Article  Google Scholar 

  19. Yu NT, Kuck JFR, Askren CC: Red fluorescence in older and brunescent human lenses. Invest Ophthalmol Vis Sci 18:1278–1280, 1979.

    PubMed  CAS  Google Scholar 

  20. Lerman S: Lens transparency and aging, in Regnault F, Hockwin O, Courtois Y (eds). Aging of the Lens. Elsevier/North Holland Biomedical Press, New York/London pp 263–279, 1980.

    Google Scholar 

  21. Garner MH, Spector A: Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci USA 77:1274, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Borkman RF, Dalrymple A, Lerman S: Ultraviolet action spectrum for fluorogen production in the ocular lens. Photochem Photobiol 26:129–132, 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Borkman RF: Ultraviolet action spectrum for tryptophan destruction in aqueous solution. Photochem Photobiol 26:163–166, 1977.

    Article  PubMed  CAS  Google Scholar 

  24. Borkman RF, Lerman S: Evidence for a free radical mechanism in aging and UV Irradiated ocular lenses. Exp Eye Res 25:303–309, 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Zigman S, Vaughn T: Near UV light effects on the lenses and retinas of mice. Invest Ophthalmol 13:462–465, 1974.

    PubMed  CAS  Google Scholar 

  26. Pitts DG, Hacker PD, Parr WH: Ocular Ultraviolet Effects from 295 nm to 400 nm in the Rabbit Eye. DHEW (NIOSH) Publication No. 77–175, October, 1977.

    Google Scholar 

  27. Lerman S: Human UV radiation cataracts. Ophthalmic Res 12:303–314, 1980.

    Article  Google Scholar 

  28. Hiller R, Giacometti L, Yuen K: Sunlight and cataract; An epidemiologic investigation, Am J Epidemiol 105:450, 1977.

    PubMed  CAS  Google Scholar 

  29. Taylor HR: The environment and the lens, Br J Ophthal 64, 303, 1980.

    Article  CAS  Google Scholar 

  30. Hollows F, and Moran D: Cataract—the ultraviolet risk factor. Lancet 1249, Dec 5, 1981.

    Google Scholar 

  31. Brilliant LB, Grasset NC, Pokhrel RP, Kolstad A, Lepkowski JM, Brilliant GE, Hawks WN: Associations among cataract prevalence, sunlight hours and altitude in the Himalayas. Am J Epidemiol 113: 250, 1983.

    Google Scholar 

  32. Ts’o MOM, Fine BS, Zimmerman LE: Photic maculopathy produced by indirect ophthalmoscope. I. Clinical and histopathic study, Am J Ophthalmol 73, 686, 1972.

    PubMed  Google Scholar 

  33. Ham WT, Muller HA, Ruffolo JJ, Guerry D, Guerry RK: Action spectrum for retinal injury from near ultraviolet radiation in the aphakic monkey, Am J Ophthalmol 93, 299, 1982.

    PubMed  Google Scholar 

  34. Hochheimer B: A possible cause of chronic cystic maculopathy: The operating microscope, Ann Ophthalmol 13, 153, 1981.

    PubMed  CAS  Google Scholar 

  35. Berler D, Peyser R: Light intensity and visual acuity following cataract surgery. Ophthalmology 89 [suppl]:117, 1982.

    Google Scholar 

  36. Lerman S, Gardner K, Megaw J, Borkman R: Prevention of direct and photosensitized UV radiation damage to the ocular lens. Ophthalmic Res 13:284–292, 1981.

    Article  Google Scholar 

  37. Thomas DM, Schepler KL: Raman spectra of normal and ultraviolet-induced cataractous rabbit lens. Invest Ophthalmol Vis Sci 19:904–912, 1980.

    PubMed  CAS  Google Scholar 

  38. Noell WK, Albrecht R: Irreversible effects of visible light on the retina: Role of Vitamin A. Science 171, 76, 1971.

    Article  Google Scholar 

  39. Ts’o MOM: Photic maculopathy in Rhesus monkey; A light and elec tron microscopic study, Invest Ophthalmol Vis Sci 12:17, 1973.

    Google Scholar 

  40. Lanum J: The damaging effects of light on the retina. Empirical findings, theoretical and practical applications, Surv Ophthalmol 22, 221, 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Marshall J, Grindle CFJ, Ansell PL, Borwein B: Convolution in human rods: an aging process, Br J Ophthalmol 63, 18, 1979.

    Google Scholar 

  42. Clark B, Johnson ML, Dreher R: The effect of sunlight on dark adaptation, Am J Ophthalmol 29:828, 1946.

    PubMed  CAS  Google Scholar 

  43. Hecht S, Hendley CD, Ross H, Richmond PN: The effect of exposure to sunlight on night vision, Am J Ophthalmol 31:1573, 1948.

    PubMed  CAS  Google Scholar 

  44. Penner R, McNair JN: Eclipse blindness, Am J Ophthalmol 61:1452, 1966.

    PubMed  CAS  Google Scholar 

  45. Potts A, Gonasum LM: Toxicology of the eye, in Toxicology, Casarett JJ, Doull J (eds). MacMillan Publishing Co, New York, pp 275–312, 1975.

    Google Scholar 

  46. Cloud TM, Hakim R, Griffin AC: Photosensitization of the eye with methoxalen. I. Acute effect. Arch Ophthalmol 64:346–351, 1960.

    PubMed  CAS  Google Scholar 

  47. Cloud TM, Hakim R, Griffin AC: Photosensitization of the eye with methoxsalen. II. Chronic effects. Arch Ophthalmol 66:689–694, 1961.

    PubMed  CAS  Google Scholar 

  48. Freeman RG, Troll D: Photosensitization of the eye by 8-methoxypsoralen. J Invest Dermatol 53:449–455, 1969.

    PubMed  CAS  Google Scholar 

  49. Lerman S, Borkman R: A method for detecting 8-methoxypsoralen in the ocular lens. Science 197:1287–1288, 1977.

    Article  PubMed  CAS  Google Scholar 

  50. Lerman S, Jocoy M, Borkman R: Photosensitization of the lens by 8-methoxypsoralen. Invest Ophthalmol Vis Sci 16:1065–1068, 1977.

    PubMed  CAS  Google Scholar 

  51. Jose JG, Yielding KL: Unscheduled DNA synthesis in lens epithelium following ultraviolet irradiation. Exp Eye Res 24:113–119, 1977.

    Article  PubMed  CAS  Google Scholar 

  52. Jose JJ, Yielding KL: Photosensitive cataractogens, chlorpromazine and methoxypsoralen cause DNA repair systhesis in lens epithelial cells. Invest Ophthalmol Vis Sci 17:687–690, 1978.

    PubMed  CAS  Google Scholar 

  53. Lerman S, Megaw J, Willis I: Potential ocular complications of PUV-A therapy and their prevention. J Invest Dermatol 74:197–199, 1980.

    Article  PubMed  CAS  Google Scholar 

  54. Lerman S, Megaw J, Willis I: The photoreaction of 8-MOP with tryptophan and lens proteins. Photochem Photobiol 31:235–243, 1980.

    Article  PubMed  CAS  Google Scholar 

  55. Megaw J, Lee J, Lerman S: NMR analyses of tryptophan-8-methoxypsoralen photoreaction products. Photochem Photobiol 32:265–270, 1980.

    Article  CAS  Google Scholar 

  56. Crylin MN, Pedvis-Leftick A, Sugar J: Cataract formation in associa tion with ultraviolet photosensitivity. Ann Ophthalmol 12:786–790, 1980.

    Google Scholar 

  57. Lerman S, Megaw J, Gardner K, Takei Y, Willis I: Localization of 8-methoxypsoralen in ocular tissues. Ophthalmic Res 13:106–116, 1981.

    Article  Google Scholar 

  58. Wulf HC, Andreasen MP: Distribution of 3H-8-mop and its metabolites in rat organs after a single oral administration. J Invest Dermatol 76:252–257, 1981.

    Article  PubMed  CAS  Google Scholar 

  59. Wulf HC, Andreasen MP: Concentration of 3H-8-methoxypsoralen and its metabolites in the rat lens and eye after a single oral adminis tration. Invest Ophthalmol Vis Sci 22:32–36, 1982.

    PubMed  CAS  Google Scholar 

  60. Lerman S: Ocular phototoxicity and PUV-A therapy: An experimental and clinical evaluation. FDA Photochemical Toxicy Symp J Natl Cancer Inst 69:287–302, 1982.

    CAS  Google Scholar 

  61. Lerman S, Megaw J, Gardner K: PUV-A therapy and human cataractogenesis. Invest Ophthalmol Vis Sci 23:801–804, 1982.

    PubMed  CAS  Google Scholar 

  62. Lerman S, Megaw J, Gardner K, Takei Y, Franks Y, Gammon A: Photobinding of 3H-8-methoxypsoralen to monkey intraocular tissues. Invest Ophthalmol Vis Sci 25:1267–1274, 1984.

    PubMed  CAS  Google Scholar 

  63. Parrish JA, Fitzpatrick TB, Tanenbaum L, Pathak MA: Photochemotherapy of psoriasis with oral methoxalen and longwave ultraviolet light. N Engl] Med 291:1207–1211, 1974.

    Article  PubMed  CAS  Google Scholar 

  64. Parrish JA, Fitzpatrick TB, Shea C, Pathak MA: Photochemotherapy of vitiligo. Use of orally administered psoralens and a high intensity longwave ultraviolet light (UV-A)system. Arch Dermatol 112:1531–1534, 1976.

    Article  PubMed  CAS  Google Scholar 

  65. Lerman S: Psoralens and ocular effects in animals and man: In vivo monitoring of human ocular and cutaneous manifestations. J Natl Cancer Inst Monograph No 66, Photochemotherapeutic Aspects of Psoralens, pp 227–233, 1984.

    Google Scholar 

  66. Dayhaw-Barker P, Barker FM II: Retinal effects of short term expo sure to 8-MOP and UV-A. Photochem Photobiol 37[Suppl]: S83, 1983.

    Google Scholar 

  67. Dayhaw-Barker P, Barker FM II, Diebert K: Effects of three drugs on the retinal threshold to damage. Am J Optom Physiol Opt 5910, 16P, 1982.

    Google Scholar 

  68. Meier-Ruge W: Drug induced retinopathy. CRC Crit Rev Toxicol 352, 1972.

    Google Scholar 

  69. Baer RL, Harber LC: Photosensitivity induced by drugs. JAMA 192:989, 1965.

    PubMed  CAS  Google Scholar 

  70. Fraunfelder FT, Hanna C, Dreis MW, Cosgrove KW: Possible lens changes associated with allopurinol therapy. Am J Ophthalmol 94:137–140, 1982.

    PubMed  CAS  Google Scholar 

  71. Lerman S, Megaw J, Gardner K: Allopurinol therapy and human cataractogenesis. Am J Ophthalmol 94:141–146, 1982.

    PubMed  CAS  Google Scholar 

  72. Lerman S, Megaw J, Fraunfelder F: Further studies on allopurinol and human cataractogenesis. Am J Ophthalmol 97:205–209, 1984.

    PubMed  CAS  Google Scholar 

  73. Krejci L, Brettschneider I, Triska J: Tetracycline hydrochloride and lens changes. Ophthalmic Res 10:30, 1978.

    Article  Google Scholar 

  74. Fraunfelder FT: Drug-induced Ocular Side Effects and Drug Interactions. Lea and Febiger, Philadelphia, 1982.

    Google Scholar 

  75. Dayhaw-Barker P, Forbes D, Fox D, Lerman S, Metgaw S, McGinniss J, Waxier M, Feiten R: Drug Photoxicity and Visual Health. FDA Symposium, Long Term Visual Health Risks of Optical Radia tion. Bethesda, Maryland, September 24–27, 1983.

    Google Scholar 

  76. Roberts JE: The photodynamic effect of chlorpromazine, promazine and hematoporphrin on lens protein, Invest Ophthalmol Vis Sci 25, 748, 1984.

    Google Scholar 

  77. Thomas JR III, Doyle JA: The therapeutic uses of topical vitamin A acid. J Am Acad Dermatol 4:505, 1981.

    Article  PubMed  Google Scholar 

  78. Ward A, Brogden RN, Heel RC, Speight TM, Avery GS: Etretinate, a Review of its pharmacological properties and therapeutic efficacy in psoriasis and other skin disorders. Drugs 26:9, 1983.

    Article  PubMed  CAS  Google Scholar 

  79. Shalita AR, Cunningham WJ, Leyden JJ, Pochi PE, Strauss JS: Isotretinoin treatment of acne and related disorders: an uptdate, J Am Acad Dermatol 9:629, 1983.

    Article  PubMed  CAS  Google Scholar 

  80. Sommer A, Treatment of corneal xerophthalmia witb topical retinoic acid. Am J Ophthalmol 95:349, 1983.

    PubMed  CAS  Google Scholar 

  81. Hatchell DL, Faculjak M, Kubicek D: Treatment of xerophthalmia with retinol, tretinoin, and etretinate. Arch Ophthalmol 102, 926, 1984.

    PubMed  CAS  Google Scholar 

  82. Fraunfelder FT, LaBraico JM, Meyer SM: Adverse Ocular Reactions Possibly Associated with Isotretinoin. Amer J Ophthalmol 100:534–537, 1985.

    CAS  Google Scholar 

  83. Lerman S: Observations on the prevention and medical treatment of cataracts, Chapter 51, in Cataract and Intraocular Lens Surgery, Ginsburg SP (ed). Aesculapius Pub Co, Birmingham, Ala, vol 2, pp 671–688, 1984.

    Google Scholar 

  84. Lerman S, Megaw J, Gardner K: Optical spectroscopy as a method to monitor aldose reductase inhibitors in the lens. Invest Ophthalmol Vis Sci 24:1505–1510, 1984.

    Google Scholar 

  85. Dragomirescu V, Hockwin O, Koch HR: Development of a new equipment for rotating slit image photography according to Scheimpflug’s principle, in Interdisciplinary Topics in Gerontology, vol 13, Basel Karger, pp 118–130, 1978.

    Google Scholar 

  86. Dragomirescu V, Hockwin O, Koch HR: Photo-cell device for slitbeam adjustment to the optical axis of the eye in scheimpflug photog raphy. Ophthalmic Res 12:78–86, 1980.

    Article  Google Scholar 

  87. Lerman S, Hockwin O: UV-visible slit lamp densitography of the human eye. Exp Eye Res 33:587–596, 1981.

    Article  PubMed  CAS  Google Scholar 

  88. Lerman S, Dragomirescu V, Hockwin O: In vivo monitoring of direct and photosensitized UV radiation damage to the lens. Acta XXIC Inter Cong Ophthalmol 1:354–358, 1983.

    Google Scholar 

  89. Lerman S: Biophysical aspects of corneal and lenticular transparency. Curr Eye Res 3(1):3–14, 1984.

    Article  PubMed  CAS  Google Scholar 

  90. Lerman S, Hockwin O: Measurement of anterior chamber diameter and biometry of anterior segment by scheimpflug slit lamp photogra phy. Am Intra Ocular Implant Soc J 11:149–152, 1985.

    CAS  Google Scholar 

  91. Lerman S, Hockwin O: Automated biometry and densitography of anterior segment of the eye. Graefe Arch Clin Exp Ophthalmol 223:121–129, 1985.

    Article  CAS  Google Scholar 

  92. Dawson WW, Herron WL: Retinal illumination during indirect Ophthalmoscopy: Subsequent dark adaptation. Invest Ophthalmol 9:89, 1970.

    PubMed  CAS  Google Scholar 

  93. Ts’o MOM, Fine BS, Zimmerman LE: Photic maculopathy produced by the indirect ophthalmoscope, I. Clinical and histopathic study. Am J Ophthalmol 73:686, 1972.

    PubMed  Google Scholar 

  94. Lerman S, Megaw J: Transmission characteristics of commercially available sunglasses. J Ocular Cut Toxicol 2:47–61, 1983.

    Google Scholar 

  95. Anderson WJ, Gebel RKH: Ultraviolet windows in commercial sun glasses. Appl Opt 16:515–517, 1977.

    Article  PubMed  CAS  Google Scholar 

  96. Lerman S: Observations on UV absorbing IOL’s. Curr Can Ophthalmic Pract 3:43–47, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lerman, S. (1987). Light-Induced Changes in Ocular Tissues. In: Miller, D. (eds) Clinical Light Damage to the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4704-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4704-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9122-0

  • Online ISBN: 978-1-4612-4704-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics