Sources, Amounts, and Forms of Alkali Elements in Soils

  • A. D. Scott
  • S. J. Smith
Part of the Advances in Soil Science book series (SOIL, volume 6)


The elements Li, Na, K, Rb, Cs, and Fr constitute group 1A of the periodic table and are collectively referred to as the alkali metals or alkalies. Stable isotopes of all these elements except Fr exist in soils; they are 6Li, 7Li, 23Na, 39K, 41K, 85Rb, and 133Cs. Of the various radioactive isotopes of the alkali metals, the artificial isotope 137Cs and the natural isotopes 40K and 87Rb are the main ones found in soils. There are several isotopes of Fr but only the radioactive isotope 223Fr from the α decay of Ac occurs naturally. Inasmuch as only 1.2% of the Ac undergoing radioactive decay yields Fr and the half-life of this isotope of Fr is only 21 min, however, even the existence of Fr in soils has been difficult to establish. Some work on the geochemistry of Fr and the contribution of Fr to the radioactivity of soils has been reported (Maddock, 1963), but this element is not considered further here.


Soil Solution Igneous Rock Alkali Content Alkali Cation Exchangeable Sodium Percentage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addiscott, T.M., and O. Talibudeen. 1969. The buffering capacity of potassium reserves in soils. Potash Rev. 4/45. 24pp.Google Scholar
  2. Agarwal, R.R. 1960. Potassium fixation in soils. Soils Fertil. 23:375–378.Google Scholar
  3. Ahrens, L.H. 1964. The significance of the chemical bond for controlling the geochemical distribution of the elements. Part 1. Phys. Chem. Earth 5: 1–54.Google Scholar
  4. Ahrens, L.H. 1965. Distribution of the Elements in our Planet. McGraw-Hill Book Co., New York.Google Scholar
  5. Aidinyan, R. Kh. 1959. Distribution of rare alkalies in soil colloids and the participation of plants in this process. Geochemistry 4:428–441.Google Scholar
  6. Aller, L.H. 1961. The Abundance ofthe Elements. Wiley-Interscience, New York.Google Scholar
  7. American Geological Institute. 1976. Glossary of Geology and Related Sciences. Anchor Press, New York.Google Scholar
  8. Angino, E.E., H.L. Cannon, K.M. Hambidge, and A.W. Voors. 1974. Lithium. In: W. Mertz (ed.) Geochemistry and the Environment. Vol. 1. National Academy of Sciences, Washington, DC, pp. 36–42.Google Scholar
  9. Arnold, M. A., and M. E. Meyerhoff. 1984. Ion-selective electrodes. Anal. Chem.56:20R-48R.Google Scholar
  10. Asher, C. J., and P. G. Ozanne. 1967. Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci. 103:155–161.Google Scholar
  11. Aubert, H., and M. Pinta. 1977. Trace Elements in Soils. Elsevier, New York.Google Scholar
  12. Babcock, K. L., and R. L. Schultz. 1970. Isotopic and conventional determination of exchangeable sodium percentage of soil in relation to plant growth. Soil Sci.109:19–22.Google Scholar
  13. Baldar, W. A., and L. D. Whittig. 1968. Occurrence and synthesis of soil zeolites. Soil Sci. Soc. Am. Proc. 32:235–238.Google Scholar
  14. Barber, S. A. 1984. Soil Nutrient Bioavailability. John Wiley and Sons, New York.Google Scholar
  15. Barber, S. A., J. M. Walker, and E. H. Vasey. 1963. Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J. Agric. Food Chem. 11:204–207.Google Scholar
  16. Barshad, I. 1950. The effect of the interlayer cations on the expansion of the mica type of crystal lattice. Am. Mineral. 35:225–228.Google Scholar
  17. Barshad, I. 1964. Chemistry of soil development. In: F. E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 1–70.Google Scholar
  18. Barth, T. W. 1969. Feldspars. Wiley-Interscience, New York.Google Scholar
  19. Bassett, W. A. 1959. The origin of the vermiculite deposit at Libby, Montana. Am. Mineral. 44:282–299.Google Scholar
  20. Bates, T. E., and A. D. Scott. 1969. Control of potassium release and reversion associated with changes in soil moisture. Soil Sci. Soc. Am. Proc. 33:566–568.Google Scholar
  21. Baver, L. D., and N. S. Hall. 1937. Colloidal properties of soil organic matter. Res. Bull. 267. Missouri Agricultural Experiment Station.Google Scholar
  22. Bear, F. E. (ed.) 1953. Sodium symposium. Soil Sci. 76: 1–96.Google Scholar
  23. Beckett, P. H. T. 1971. Potassium potentials—a review. Potash Rev. 5/30,41 pp.Google Scholar
  24. Bingham, F. T., A. L. Page, and C. R. Bradford. 1964. Tolerance of plants to lithium. Soil Sci. 98:4–8.Google Scholar
  25. Black, C. A. 1968. Soil-Plant Relationships. 2nd ed. John Wiley and Sons, New York.Google Scholar
  26. Bolton, J. 1966. Distribution and rate of release of cations from mechanical fractions of soils. Ann. Rept. Rothamsted Expt. Sta. 1965, pp. 61–62.Google Scholar
  27. Bolton, J. 1971. Quantity-intensity relationships for labile sodium in field soils. J. Soil Sci. 22:417–429.Google Scholar
  28. Bouat, M. 1969. L’utilisation du potassium 40 et potassium 42 en agronomie. Ann.Agron. 20:89–104.Google Scholar
  29. Bowen, H. J. M. 1979. Environmental Chemistry of the Elements. Academic Press, New York.Google Scholar
  30. Bowen, H. J. M., and P. A. Cawse. 1965. Some effects of gamma radiation on the composition of the soil solution and soil organic matter. Soil Sci. 98:358–361.Google Scholar
  31. Boyer, J. 1972. Soil potassium. In: Soils of the Humid Tropics. National Academy of Sciences, Washington, DC, pp. 102–135.Google Scholar
  32. Bradford, G. R. 1963. Lithium survey of California’s water resources. Soil Sci. 96:77–81.Google Scholar
  33. Bradford, G. R. 1966. Lithium. In: H. D. Chapman (ed.) Diagnostic Criteria for Plants and Soils. University of California, Division of Agricultural Sciences, pp. 218–224.Google Scholar
  34. Bradford, G. R., and P. F. Pratt. 1961. Separation and determination of lithium in irrigation water, plant material, and soil extracts. Soil Sci. 91: 189–193.Google Scholar
  35. Brady, N. C. 1984. The Nature and Properties of Soils. 9th ed. Macmillan, New York.Google Scholar
  36. Bresler, E., B. L. McNeal, and D. L. Carter. 1982. Saline and Sadie Soils. Springer-Verlag, Berlin.Google Scholar
  37. Briscoe, H. V. A., A. A. Eldridge, G. M. Dyson, and A. J. E. Welch (eds.) 1961. Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol.II, Suppl. II. John Wiley and Sons, New York.Google Scholar
  38. Briscoe, H. V. A., A. A. Eldridge, G. M. Dyson, and A. J. E. Welch (eds.) 1963. Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol.II, Suppl. III. John Wiley and Sons, New York.Google Scholar
  39. Brownell, P. F. 1979. Sodium as an essential micronutrient element in plants and its role in metabolism. Adv. Bot. Res. 7:117–224.Google Scholar
  40. Buckman, H. O., and N. C. Brady. 1969. The Nature and Properties of Soils. 7th ed. Macmillan, New York.Google Scholar
  41. Burbidge, E. M., G. R. Burbidge, W. A. Fowler, and F. Hoyle. 1957. Synthesis of the elements in stars. Rev. Mod. Phys. 29:547–650.Google Scholar
  42. Burridge, J. C., and P. M. Ahn. 1965. A spectrographic survey of representative Ghana forest soils. J. Soil Sci. 16:296–309.Google Scholar
  43. Butler, J. R. 1954. Trace-element distribution in some Lancashire soils. J. Soil Sci. 5: 156–166.Google Scholar
  44. Call, F. 1961. Biological properties of lithium. In: H.V.A. Briscoe, A.A. Eldridge, G.M. Dyson, and A.J.E. Welch (eds.) Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry: Vol. II, Suppl. II. John Wiley and Sons, New York, pp. 293–304.Google Scholar
  45. Chester, R. 1965. Elemental geochemistry of marine sediments. In: J.P. Riley and G. Skirrow (eds.) Chemical Oceanography, Vol. 2. Academic Press, New York, pp. 23–80.Google Scholar
  46. Clarke, F. W. 1924. The data of geochemistry. US Geological Survey Bull. 770.Google Scholar
  47. Coffey, G. N. 1912. A study of the soils of the United States. US Department of Agriculture, Bureau of Soils, Bull. No. 85.Google Scholar
  48. Cook, M. G., and C. I. Rich. 1962. Weathering of sodium-potassium mica in soils of the Virginia Piedmont. Soil Sci. Soc. Am. Proc. 26:591–595.Google Scholar
  49. Cooke, G. W. 1967. The control of Soil Fertility. Lockwood, London.Google Scholar
  50. Cotton, F. A., and G. Wilkinson. 1980. Advanced Inorganic Chemistry: A Comprehensive Text. John Wiley and Sons, New York.Google Scholar
  51. Coughtrey, P. J., and M. C. Thorne. 1983a. Rubidium. In: Radionuclide Distribution and Transport in Terrestial and Aquatic Ecosystems. A Critical Reviewof Data. Vol. 1. A.A. Balkema, Rotterdam, pp. 69–92.Google Scholar
  52. Coughtrey, P. J., and M. C. Thorne. 1983b. Cesium. In: Radionuclide Distribution and Transport in Terrestial and Aquatic Ecosystems. A Critical Review of Data. Vol. 1. A.A. Balkema, Rotterdam, pp. 321–424.Google Scholar
  53. Coughtrey P. J., D. Jackson, and M. Thorne. 1983. Sodium. In: Radionuclide Distribution and Transport in Terrestial and Aquatic Ecosystems, A Critical Review of Data. Vol. 3. A.A. Balkema, Rotterdam, pp. 1–41.Google Scholar
  54. Curtis, C. D., P. E. Brown, and V. A. Somogyi. 1969. A naturally occurring sodium vermiculite from Unst, Shetland. Clay Mineral. 8:15–19.Google Scholar
  55. Davey, B. G., and R. C. Wheeler. 1980. Some aspects of the chemistry of lithium in soils. Plant Soil 57:49–60.Google Scholar
  56. Davis, J. J. 1963. Cesium and its relationship to potassium in ecology. In: V. Schultz and A. W. Klement (eds.) Radioecology. Reinhold, New York.Google Scholar
  57. Day, F. H. 1964. The Chemical Elements in Nature. Reinhold, New York.Google Scholar
  58. Deer, W. A., R. A. Howie, and J. Zussman. 1962. Rock Forming Minerals, Vol. 3. Sheet Silicates. Longmans, London.Google Scholar
  59. Diamond, J. M., and E. M. Wright. 1969. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Ann. Rev. Physiol. 31:581–646.Google Scholar
  60. Diest, J., and O. Talibudeen. 1967. Rubidium-86 as a tracer for exchangeable potassium in soils. Soil Sci. 104:119–122.Google Scholar
  61. Donnay, G., and J. W. Gryder. 1964. The ionic radius of lithium. Carnegie Inst. Wash. Year Book 63:238–239. Google Scholar
  62. Duthion, C. 1968. Potassium in the soil. Potash Rev. 4/43. 21pp.Google Scholar
  63. Eaton, F. M., and V. P. Sokoloff. 1935. Absorbed sodium in soils as affected by the soil-water ratio. Soil Sci. 40:237–247.Google Scholar
  64. Eberl, D. D. 1980. Alkali cation selectivity and fixation by clay minerals. Clays Clay Mineral. 28:161–172.Google Scholar
  65. Eckert, D. J., and E. O. McLean. 1980. Differential bonding of potassium and rudibium-86 in soils of differing clay type and degree of weathering. Soil Sci. Soc. Am. J. 44:425–428Google Scholar
  66. Eisenman, G. 1962. Cation-selective glass electrodes and their mode of operation. Biophys, J. 2(part 2):259–324.PubMedGoogle Scholar
  67. Eisenman, G. 1969. Theory of membrane electrode potentials: an examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral sequestering molecules. In: R.A. Durst (ed.) lon-Selective Electrodes. National Bureau of Standards, Spec. Publ. 314, pp. 1–56.Google Scholar
  68. Epstein, E. 1960. Calcium-lithium competition in absorption by plant roots. Nature (London) 1985:705–706.Google Scholar
  69. Evans, D. W., J. J. Alberts, and R. A. Clark III. 1983. Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim. Cosmochim. Acta 47: 1041–1049.Google Scholar
  70. Failyer, G. H., J. G. Smith, and H. R. Wade. 1908. The mineral composition of soil particles. US Department of Agriculture, Bureau of Soils, Bull. No. 54.Google Scholar
  71. Fanning, D. S., and V. Z. Keramidas. 1977. Micas. In: J.B. Dixon and S. B. Weed (eds.) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp. 195–258.Google Scholar
  72. Farrell, R. E. 1979. Electrochemical determination of extractable potassium in micaceous minerals. M.S. Thesis. Iowa State University, Ames, IA.Google Scholar
  73. Farrell, R. E. 1985. Development and application of potentiometric methods of characterizing potassium in soils and micaceous minerals. Ph.D. Diss. Iowa State University, Ames, IA. (Diss. Abstr. 85–24650).Google Scholar
  74. Foster, N. D. 1960. Interpretation of the composition of lithium micas. US Geological Survey, Prof. Paper 354-E.Google Scholar
  75. Frere, M. H., R. G. Menzel, K. H. Larson, R. Overstreet, and R. F. Reitemeier. 1963. The behavior of radioactive fallout in soils and plants. National Academy of Sciences-National Research Council, Publ. 1092.Google Scholar
  76. Gentili, R. 1954. The geochemistry of potassium. Potassium Symp. 1954:27–40.Google Scholar
  77. Goldschmidt, V. M. 1954. Geochemistry. Clarendon Press, Oxford.Google Scholar
  78. Goles, G. G. 1969. Cosmic abundances. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. I. Springer-Verlag, Berlin, pp. 116–133.Google Scholar
  79. Gordy, W., and W. J. O. Thomas. 1956. Electronegativities of the elements. J. Chem. Phys. 24:439–444Google Scholar
  80. Goulding, K. W. T. 1983. Thermodynamics and potassium exchange in soils and clay minerals. Adv. Agron. 36:215–264.Google Scholar
  81. Greenwood, R. 1960. Availability of cesium for ion rockets. Mining Eng. 12:482–483.Google Scholar
  82. Grimes, D. W. 1966. An evaluation of the availability of potassium in crop residues. Ph.D. Diss. Iowa State University, Ames, IA (Diss. Abstr. 66–06981).Google Scholar
  83. Grimme, H., and K. Nemeth. 1978. The evaluation of soil K status by means of soil testing. Proc, 11th Congr. Int. Potash lnst. 1978:99–108.Google Scholar
  84. Hanway, J. J. 1954. Fixation and release of ammonium in soils and certain minerals. Ph.D. Diss. Iowa State University, Ames, IA.Google Scholar
  85. Hanway, J. J., and A. D. Scott. 1956. Ammonium fixation and release in certain Iowa soils. Soil Sci. 82:379–386.Google Scholar
  86. Hanway, J. J., A. D. Scott, and G. Stanford. 1957. Replaceability of ammonium fixed in clay minerals as influenced by ammonium or potassium in the extracting solution. Soil Sci. Soc. Am. Proc. 21:29–34.Google Scholar
  87. Hargett, N. L., and J. T. Berry. 1985. Fertilizer summary data. TVA Bull. 189. Muscle Shoals, AL.Google Scholar
  88. Heier, K. S., and J. A. S. Adams. 1964. The geochemistry of the alkali metals. Phys.Chem. Earth 5:253–381.Google Scholar
  89. Heier, K. S., and G. K. Billings. 1970. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vols. II/1,II/2, and II/3. Springer-Verlag, Berlin.Google Scholar
  90. Helfferich, F. 1962. Ion Exchange. McGraw-Hill Book Co., New York.Google Scholar
  91. Helfferich, F. 1966. Ion-exchange kinetics. In: J.A. Marinsky (ed.) Ion Exchange.Vol. 1. Marcel Dekker, New York, pp. 65–100.Google Scholar
  92. Heydemann, A. 1969. Tables. In: K.H. Wedepohl (ed.) Handbook of Geochemistry.Vol. 1. Springer-Verlag, Berlin, pp. 376–412.Google Scholar
  93. Hood, J. T., N. C. Brady, and D. J. Lathwell. 1956. The relationship of water soluble and exchangeable potassium to yield and potassium uptake by Ladino clover. Soil Sci. Soc. Am. Proc. 20:228–231.Google Scholar
  94. Horstman, E. L. 1957. The distribution of lithium, rubidium, and caesium in igneous and sedimentary rocks. Geochim. Cosmochim. Acta 12:1–28.Google Scholar
  95. International Potash Institute. 1972. Mineralogy of soil potassium. In: Potassium in Soil. Proc. 9th Colloq. Int. Potash lnst. Landshut, Federal Republic of Germany, pp. 13–71.Google Scholar
  96. Jackson, M. L. 1964. Chemical composition of soils. In: F.E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 71–141.Google Scholar
  97. Jeffries, C. D. 1947. The mineralogical approach to some soil problems. Soil Sci. 63:315–320.Google Scholar
  98. Johnson, F. N. 1984. The Psychopharmacology of Lithium, MacMillan Press, London.Google Scholar
  99. Kabata-Pendias, A., and H. Pendias. 1984. Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL.Google Scholar
  100. Kelley, W. P. 1951. Alkali Soils, Their Formation, Properties and Reclamation. Reinhold, New York.Google Scholar
  101. Kilmer, V. J. 1965. Silicon. Agronomy 9:959–962Google Scholar
  102. Kirkham, M. B. 1979. Sludge disposal. In: R.W. Fairbridge and C.W. Finkl, Jr. (eds.) Encyclopedia of Soil Science. Part I. Dowden, Hutchinson & Ross, Stroudsburg, PA, pp. 429–433.Google Scholar
  103. Lange, I. M., R. C. Reynolds, and J. B. Lyons. 1966. K/Rb ratios in coexisting K-feldspars and biotites from some new England granites and metasediments. Chem. Geol. 1:317–322.Google Scholar
  104. Larson, W. E. 1949. Release of sodium from nonreplaceable to replaceable forms in Iowa soils and the response of various crops to sodium fertilization. Ph.D. Diss. Iowa State University, Ames, IA.Google Scholar
  105. Larson, W. E., and W. H. Allaway. 1950. Release of sodium from nonreplaceable to replaceable forms in some Iowa soils. Soil Sci. 70:249–256.Google Scholar
  106. Lee, S. Y., and R. W. Tank. 1985. Role of clays in the disposal of nuclear waste: A review. Appl. Clay Sci. 1:145–162Google Scholar
  107. Liu, M. M. 1970. Exchangeability of potassium in Marshall soil. M.S. Thesis. Iowa State University, Ames, IA.Google Scholar
  108. Livingstone, D. A. 1963. Chemical composition of rivers and lakes. US Geological Survey, Prof. Paper 440-G.Google Scholar
  109. Lomenick, T. F., D. G. Jacobs, and E. G. Struxness. 1967. The behavior r of strontium-90 and cesium-137 in seepage pits at ORNL. Health Phys. 13:897–905.PubMedGoogle Scholar
  110. Loughnan, F. C. 1969. Chemical Weathering of the Silicate Minerals. Elsevier, New York.Google Scholar
  111. Luebs, R. E., G. Stanford, and A. D. Scott. 1956. Relation of available potassium to soil moisture. Soil Sci. Soc. Am. Proc. 20:45–50.Google Scholar
  112. Maddock, A. G. 1963. Francium. In: H.V. Briscoe, A.A. Eldridge, G.M. Dyson, and A.J.E. Welch (eds.) Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II, Suppl. III. John Wiley and Sons, New York, pp. 2506–2521.Google Scholar
  113. Marbut, C. F. 1935. Soils of the United States. In: Atlas of American Agriculture. Part 3. US Department of Agriculture, Washington, DC.Google Scholar
  114. Martin, G. R. 1963. The natural radioactivity of the alkali metals. In: H.V.A. Briscoe, A.A. Eldridge, G.M. Dyson and A.J.E. Welch (eds.) Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II, Suppl.III. John Wiley and Sons, New York, pp. 2408–2505.Google Scholar
  115. Martin, H. W., and D. L. Sparks. 1985. On the behavior of nonexchangeable potassium in soils. Commun. Soil Sci. Plant Anal. 16:133–162.Google Scholar
  116. Mason, B. 1966. Principles ojGeochernistry. 3rd ed. John Wiley and Sons, New York.Google Scholar
  117. Matthews, B.C., and J.A. Smith. 1957. A percolation method for measuring potassium-supplying power of soils. Can. J. Soil Sci. 37:21–28.Google Scholar
  118. McCaHan, M.E., B.M. O’Leary, and C.W. Rose. 1980. Redistribution of cesium137 by erosion and deposition on an Australian soil. Austr. J. Soil Res. 18:119–128.Google Scholar
  119. McGeorge, W.T. 1931. Organic compounds associated with base exchange reactions in soils. Arizona Agr. Expt. Sta. Tech. Bull. No. 31.Google Scholar
  120. McHenry, J.R., and G.D. Bubenzer. 1985. Field erosion estimated from 137CS activity measurements. Trans. Am. Soc. Agric. Eng. 28:480–483.Google Scholar
  121. McLaughlin, R.J.W. 1955. Geochemical changes due to weathering under varying climatic conditions. Geochim. Cosmochim. Acta 8: 109–130.Google Scholar
  122. McLaughlin, R.J.W. 1958. Geochemical partition in two illitic clays. Geochim.Cosmochi. Acta 15:165–169.Google Scholar
  123. McLaughlin, R.J.W. 1959. The geochemistry of some kaolinitic clays. Geochim.Cosmochim. Acta 17:11–16.Google Scholar
  124. Mellor, J.W. 1922. A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II. Longmans Green, London.Google Scholar
  125. Mengel, K., and E.A. Kirby. 1980. Potassium in crop production. Adv. Agron. 33:59–103.Google Scholar
  126. Menzel, R.G., and S.J. Smith. 1984. Soil fertility and plant nutrition. In: M.F. L’Annunziata and J.0. Legg (eds.) Isotopes and Radiation in Agricultural Sciences. Vol. 1. Academic Press, London, pp. 1–34.Google Scholar
  127. Merwin, H.D., and M. Peech. 1950. Exchangeability of soil potassium in the sand, silt, and clay fractions as influenced by the nature of the complementary exchangeable cation. Soil Sci. Soc. Am. Proc. 15:125–128.Google Scholar
  128. Metson, AJ. 1980. Potassium in New Zealand soils. New Zealand Soil Bureau, Sci. Rept. 38. 61 pp.Google Scholar
  129. Mielniczuk, J. 1979. Forms of potassium in Brazilian soils. Potash Rev.4/63.13 pp.Google Scholar
  130. Mitchell, R.L. 1964. Trace elements in soils. In: F.E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 320–368.Google Scholar
  131. Mortensen, J.L., and F.L. Himes. 1964. Soil organic matter. In: F.E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 206–241.Google Scholar
  132. Moss, P. 1969. A comparison of potassium-activity ratios derived from equilibration procedures and from measurements on displaced soil solution. J. Soil Sci. 20:297–306.Google Scholar
  133. Norrish, K. 1972. Factors in the weathering of mica to vermiculite. Proc. 1972 Int. Clay Conf. 2:83–101Google Scholar
  134. Norton, J.J. 1965. Lithium-bearing bentonite deposit, Yavapai County, Arizona. pp. DI63-DI66. In: Geological survey research 1965. US Geological Survey, Prof. Paper 525-D.Google Scholar
  135. Nyc, P.H. 1972. Localized movement of potassium ions in soil. Proc. 9th Colloq. Int. Potash Inst. pp. 147–155.Google Scholar
  136. Parker, F. W. 1921. Methods of studying the concentration and composition of the soil solution. Soil Sci. 12:209–232.Google Scholar
  137. Parker, R.L. 1967. Data of geochemistry. Chapter D. Composition of the earth’s crust. US Geological Survey, Prof. Paper 440-D.Google Scholar
  138. Pearson, G.A. 1960. Tolerance of crops to exchangeable sodium. US Department of Agriculture, Information Bull. 216.Google Scholar
  139. Pettijohn, F.J. 1957. Sedimentary Rocks. 2nd ed. Harper & Row, New York.Google Scholar
  140. Prost, R., and R. Calvet. 1969. Position du lithium dans une montmorillonite Li chauffee. Compt. Rend. Acad. Sci. 269D:539–541.Google Scholar
  141. Quernener, J. 1979. The measurement of soil potassium. IPI Research Topics, No.4. Intern. Potash Institute. Bern-Worblanfen, Switzerland.Google Scholar
  142. Rankama, K., and Th.G. Sahama. 1950. Geochemistry. University of Chicago Press, Chicago.Google Scholar
  143. Rausell-Colom, J.A., T.R. Sweatman, C.B. Wells, and K. Norrish. 1965. Studies in the artificial weathering of mica. In: E.G. Hallsworth and D. V. Crawford (eds.) Experimental Pedology. Butterworths, London. pp. 40–72.Google Scholar
  144. Reichenberg, D. 1966. Ion-exchange selectivity. In: J.A. Marinsky (ed.) Ion exchange.Vol. 1. Marcel Dekker, New York. pp. 227–276.Google Scholar
  145. Reitemeier, R. F. 1946. Effect of moisture content on the dissolved and exchangeable ions of soil s of arid regions. Soil Sci. 61: 195–214.Google Scholar
  146. Reiterneier, R.F. 1951. Soil potassium. Adv. Agron. 3:113–164Google Scholar
  147. Reitemeier, R.F. 1957. Soil potassium and fertility. In: A. Stefferud (ed.), Soil. 1957 Yearbook of Agriculture. US Government Printing Office, Washington, DC, pp. 101–106.Google Scholar
  148. Rich, C.I. 1968. Mineralogy of soil potassium. In: V.J. Kilmer, S.E. Younts, and N.C. Brady (eds.) The Role of Potassium in Agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of Agronomy, Madison, WI, pp. 79–108.Google Scholar
  149. Rich, C.I., and W.R. Black. 1964. Potassium exchange as affected by cation size, pH, and mineral structure. Soil Sci. 97:384–390.Google Scholar
  150. Richards, F.A. 1956. On the state of our knowledge of trace elements in the ocean.Geochim. Cosmochim. Acta 10:241–243.Google Scholar
  151. Richter, D. 1965. Potassium in soil and plant. Part 1. Occurrence and behavior of potassium in soils. Fortschrittskerichte fur die Landwirtschoft. 14. 47 pp.Google Scholar
  152. Ritchie, J.C., and J.R. McHenry. 1973. Vertical distribution of fallout cesium-137 in cultivated soils. Radiation Data Repts. 14:727–728.Google Scholar
  153. Ritchie, J.C., J.R. McHenry, A.C. Gill and P.H. Hanks. 1970. The use of cesium137 as a tracer of sediment movement and deposition. Proc. Miss. Water Res.Conf. pp. 149–162.Google Scholar
  154. Ritchie, K.D. (ed.) 1979. K fertility in oxisols and ultisols of the humid tropics. Cornell International Agricultural Bull. 37. 45 pp.Google Scholar
  155. Robert, J.L., M. Volfinger, J.N. Barrandon, and M. Basutcu. 1983. Lithium in the interlayer space of synthetic trioctahedral micas. Chem. Geol. 40:337–351Google Scholar
  156. Robinson, B.P. 1962. Ion-exchange minerals and disposal of radioactive wastes —A survey of literature. US Geological Survey Water-Supply Paper 1616.Google Scholar
  157. Rosseinsky, D.R. 1965. Electrode potentials and hydration energies. Theories and correlations. Chem. Rev. 65:467–490.Google Scholar
  158. Salmon, R.C. 1964. Potassium in different fractions of some Rhodesian soils. Rhodesian J. Agric. Res. 2:85–90Google Scholar
  159. Sawhney, B.L. 1972. Selective sorption and fixation of cations by clay minerals: A review. Clays Clay Mineral. 20:93–100Google Scholar
  160. Schroeder, D. 1978. Structure and weathering of potassium containing minerals. Proc. 11th Congr. Int. Potash Inst. 1978:5–25.Google Scholar
  161. Schuffelen, A.C., and H.W. van der Marel. 1955. Potassium fixation in soils. Potassium Symp, 1955:157–201.Google Scholar
  162. Schultz, R.K., R. Overstreet, and I. Barshad. 1960. On the soil chemistry of cesium 137. Soil Sci. 89: 16–27.Google Scholar
  163. Scott, A.D. 1968. Effect of particle size on interlayer potassium exchange in micas. Trans. 9th Int. Congr. Soil Sci. 2:649–660.Google Scholar
  164. Scott, A.D., and J.J. Hanway. 1960. Factors influencing the change in exchangeable soil K observed on drying. Trans. 7th Int. Congr. Soil Sci. 3:72–79Google Scholar
  165. Scott, A.D., and S.J. Smith. 1966. Susceptibility of interlayer potassium in micas to exchange with sodium. Clays Clay Mineral. 14:69–81.Google Scholar
  166. Scott, A.D., and L.F. Welch. 1961. Release of nonexchangeable soil potassium during short periods of cropping and sodium tetraphenylboron extraction. Soil Sci. Soc. Am. Proc. 25: 128–132.Google Scholar
  167. Shainberg, I., and W.D. Kemper. 1966. Electrostatic forces between clay and cations as calculated and inferred from electrical conductivity. Clays Clay Mineral.14:117–132.Google Scholar
  168. Shainberg, I. and W.D. Kemper. 1967. Ion exchange equilibria on montmorillonite. Soil Sci. 103:4–9.Google Scholar
  169. Sharpley, A.N., S.J. Smith, R.G. Menzel, and R.L. Westerman. 1985. The chemical composition of rainfall in the Southern Plains and its impact on soil and water quality. Oklahoma State University Tech. Bull. T-162.Google Scholar
  170. Sherry, H.S. 1969. The ion-exchange properties of zeolites. In: J.A. Marinsky (ed.) Ion Exchange. Vol. 2. Marcel Dekker, New York, pp. 89–133.Google Scholar
  171. Short, N.M. 1961. Geochemical variations in four residual soils. J. Geol. 69:534–571.Google Scholar
  172. Shukla, U.C., and K.G. Prasad. 1973. Forms and distribution of lithium, boron and fluorine in some sierozem soils of Haryama. Indian J. Agric. Sci. 43:934–937.Google Scholar
  173. Smith, S.J. 1967. Susceptibility of interlayer potassium in illites to exchange. Ph.D. Diss. Iowa State University, Ames, IA. (Diss. Abstr. 67–08935).Google Scholar
  174. Smith, S.J., and A.D. Scott. 1974. Exchangeability of potassium in heated finegrained micaceous minerals. Clays Clay Mineral. 22:263–270Google Scholar
  175. Smith, S.J., L.J. Clark, and A.D. Scott. 1968. Exchangeability of potassium in soils. Trans. 9th Int. Congr. Soil Sci. 2:661–669Google Scholar
  176. Soil Conservation Service-US Department of Agriculture. 1978. Soil Survey laboratory data and descriptions for some soils of Iowa. Soil Survey Investigations Report No. 31.Google Scholar
  177. Soil Science Society of America, Terminology Committees. 1979. Glossary of Soil Science Terms. Rev. ed. Soil Science Society of America, Madison, WI.Google Scholar
  178. Soil Survey Staff. 1975. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. US Department of Agriculture, Handbook No. 436.Google Scholar
  179. Souty, N., R. Guennelon, and C. Rode. 1975. Some observations of potassium rubidium-87 and caesium-137 absorption by plants grown on nutritive solutions. Ann. Agron. 26:41–58.Google Scholar
  180. Spencer, D.W., E.G. Degens, and G. Kulbicki. 1968. Factors affecting element distributions in sediments. In: L.H. Ahrens (ed.) Origin and Distribution of the Elements. Pergamon Press, Oxford, pp. 981–998.Google Scholar
  181. Sreekumaran, C.K., K.C. Pillai, and T.R. Folsom. 1968. The concentrations of lithium, potassium, rubidium and cesium in some western American rivers and marine sediments. Geochim. Cosmochim. Acta 32: 1229–1234.Google Scholar
  182. Stern, K.H., and E.S. Adams. 1959. Ionic size. Chem. Rev. 59: 1–64.Google Scholar
  183. Stevens, R.E., and W.T. Schaller. 1942. The rare alkalies in micas. Am. Mineral.27:525–537.Google Scholar
  184. Su, N.R. 1978. Potassium in paddy soils and potassium fertilization of rice. In: Soils and Fertilizers in Taiwan. Taichung, Taiwan. pp. 1–22.Google Scholar
  185. Suess, H.E., and H.C. Urey. 1956. Abundances of the elements. Rev. Mod. Phys. 28:53–74.Google Scholar
  186. Swaine, D.J. 1962. The trace-element content of fertilizers. Commonwealth Bureau of Soil Science, Tech. Commun. No. 52.Google Scholar
  187. Swaine, D.J., and R.L. Mitchell. 1960. Trace-element distribution in soil profiles. J. Soil Sci. 11:347–368.Google Scholar
  188. Tabatabai, M.A. 1983. Atmospheric deposition of nutrients and pesticides. In: F.W. Schaller and G.W. Bailey (eds.) Agricultural Management and Water Quality. Iowa State University Press, Ames, IA, pp. 92–108.Google Scholar
  189. Talibudeen, O. 1964. Natural radioactivity in soils. Soils Fertil. 27:347–359Google Scholar
  190. Talibudeen, O. 1972. Exchange of potassium in soils in relation to other cations. Proc. 9th Colloq. Int. Potash Inst. pp. 97–112.Google Scholar
  191. Talibudeen, O., and M.B. Page. 1983. Ion-selective electrodes. In: K.A. Smith (ed.) Soil Analysis. Marcel Dekker, New York, pp. 55–113.Google Scholar
  192. Tamura, T. and D.G. Jacobs. 1960. Structural implications in cesium sorption. Health Phys. 2:391–398.PubMedGoogle Scholar
  193. Taylor, S.R. 1965. The application of trace element data to problems in petrology. Phys. Chem. Earth 6:133–213Google Scholar
  194. Tettenhorst, R. 1962. Cation migration in montmorillonites. Am. Mineral. 47:769–773.Google Scholar
  195. Timmons, D.R., and R.F. Holt. 1977. Nutrient losses in surface runoff from a native prairie. J. Environ. Qual. 6:369–373.Google Scholar
  196. Tinker, P.B. 1967a. A comparison of the properties of sodium and potassium in the soil. Chilean Nitrate Agriculture Service, Information No. 97.Google Scholar
  197. Tinker, P.B. 1967b. The relationship of sodium in the soil to uptake of sodium by sugar beets in the greenhouse and to yield responses in the field. Trans. Commun. II and IV, International Society of Soil Science, Aberdeen, p. 223.Google Scholar
  198. Tisdale, S.L., W.L. Nelson, and J.D. Beaton. 1985. Soil Fertility and Fertilizers. 4th ed. Macmillan, New York.Google Scholar
  199. Turekian, K.K. 1969. The oceans, streams, and atmosphere. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. 1. Springer-Verlag, Berlin, pp. 297–323.Google Scholar
  200. Unger, P.W., and T.M. McCalla. 1980. Conservation tillage systems. Adv. Agron. 33: 1–58.Google Scholar
  201. Urey, H. C. 1967. The abundance of the elements with special reference to the problem of the iron abundance. Quart. J. Roy. Astron. Soc. 8:23–47Google Scholar
  202. US Department of Agriculture. 1979. Animal waste utilization on cropland and pastureland. USDA Utilization Res. Report No.6. US Government Printing Office, Washington, DC.Google Scholar
  203. US Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. US Department of Agriculture, Handbook No. 60.Google Scholar
  204. Verma, G.P. 1963. Release of nonexchangeable potassium from soils and micaceous minerals during short periods of cropping in the greenhouse. Ph.D. Diss. Iowa State Univ., Ames, IA. (Diss. Abstr. 64–03997).Google Scholar
  205. Vinogradov, A.P. 1959. The Geochemistry of Rare and Dispersed Chemical Elements in Soils. 2nd ed. Consultants Bureau, New York.Google Scholar
  206. Vlasov, K.A. (ed.) 1966a. Geochemistry and Mineralogy of Rare Elements and Genetic Types of Their Deposits. Vol. 1. Geochemistry ofRare Elements. Israel Program for Scientific Translations, Jerusalem.Google Scholar
  207. Vlasov, K.A. (ed.). 1966b. Geochemistry and Mineralogy of Rare Elements and Genetic Types oftheir Deposits. Vol. II. Mineralogy of Rare Elements. Israel Program for Scientific Translations, Jerusalem.Google Scholar
  208. Weaver, C.E. 1967. Potassium, illite and the ocean. Geochim. Cosmochim. Acta 31:2181–2196.Google Scholar
  209. Wedepohl, K.H. 1969a. Composition and abundance of common igneous rocks. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. 1. Springer-Verlag, Berlin, pp. 227–249.Google Scholar
  210. Wedepohl, K.H. 1969b. Composition and abundance of common sedimentary rocks. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. 1. SpringerVerlag, Berlin, pp. 250–271.Google Scholar
  211. Welby, C.W. 1958. Occurrence of alkali metals in some Gulf of Mexico sediments. J. Sed. Petrol. 28:431–452.Google Scholar
  212. Welch, L.F., and A.D. Scott. 1959. Nitrification in nutrient solutions with low levels of potassium. Can. J. Microbiol. 5:425–430.PubMedGoogle Scholar
  213. Welch, L.F., and A.D. Scott. 1960. Nitrification of fixed ammonium in clay minerals as affected by added potassium. Soil Sci. 90:79–85.Google Scholar
  214. Welch, L.F., and A.D. Scott. 1961. Availability of nonexchangeable soil potassium to plants as affected by added potassium and ammonium. Soil Sci. Soc. Am.Proc. 25: 102–104.Google Scholar
  215. Wells, N., and J.S. Whitten. 1972. A pedochemical survey. Part 1. Lithium. N.Z.J. Sci. 15:90–106.Google Scholar
  216. Wiklander, L. 1954. Forms of potassium in the soil. Potassium Symp. 1954:109–121.Google Scholar
  217. Wiklander, L. 1964. Cation and anion exchange phenomena. In: F.E. Bear (ed.) Chemistry of the Soil. Reinhold, New York, pp. 163–205.Google Scholar
  218. Williams, D.E. 1961. The absorption of potassium as influenced by its concentration in the nutrient medium. Plant Soil 15:387–399.Google Scholar
  219. Xu, M.L., and Z.Y. Liu. 1982. The nutrient status of soil-root interface. I. The application of potassium selective micro-electrode. Acta Pedol. Sinica 19:367–374.Google Scholar
  220. Xuan, J.X. 1982. Mathematical model for the movement of potassium ions to rice roots. Acta Pedal. Sinica 19:296–304Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1987

Authors and Affiliations

  • A. D. Scott
  • S. J. Smith

There are no affiliations available

Personalised recommendations