Skip to main content

Comparison of Measured and Computed Pitot Pressures in a Leading Edge Vortex from a Delta Wing

  • Conference paper

Part of the book series: ICASE NASA LaRC Series ((ICASE/NASA))

Abstract

A number of papers[1–9] have appeared in recent years reporting numerical solutions of the Euler equations for flows past sharp edge delta wings with leading edge vortices. A schematic diagram of the problem under consideration is shown in Figure 1. Solutions have been compared with experiment [1,8], with incompressible panel method calculations [6], with other Euler equation solutions [8,5], and with Navier-Stokes calculations [9]. Although one cannot conclude that these comparisons show complete agreement, it is reasonable to say that they establish that finite volume calculations of the Euler equations appear to give reasonable predictions of the primary vortex generated by this configuration. A point of some concern in these papers [1,3,4] relates to the mechanism by which the Euler equations cause the flow to separate from the body and form a strong vortex which has associated with it a significant total pressure loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Rizzi, A., Eriksson, L.E., Schmidt, W. and Hitzel, S. “Numerical Solutions of the Euler Equations Simulating Vortex Flows Around Wings,” AGARD-CP-342, Paper 21, 1983.

    Google Scholar 

  2. Weiland, C., “Vortex Flow Simulations Past Wings Using the Euler Equations,” AGARD-CP-342, Paper 19, 1983.

    Google Scholar 

  3. Murman, E., Rizzi, A. and Powell, K., “High Resolution Solutions of the Euler Equations for Vortex Flows,” in Progress and Supercomputing in Computational Fluid Dynamics, pp 93-113, Birkha:userBoston 1985.

    Chapter  Google Scholar 

  4. Rizzi, A. and Eriksson, L., “Computation of Inviscid Incompressible Flow With Rotation,” Journal of Fluid Mechanics, Vol 153, pp 275-312, April 1985.

    Article  ADS  MATH  Google Scholar 

  5. Arlinger, B.G., “Computation of Supersonic Flow Including Leading-Edge Vortex Flows Using Marching Euler Technique,” presented at the International Symposium on Computational Fluid Dynaimics, Tokyo, Japan, Sept 1985.

    Google Scholar 

  6. Hoeijmakers, H.W.M. and Rizzi, A., “Vortex-Fitted Potential and Vortex- Captured Euler Solution for Leading-Edge Vortex Flow” AIAA Journal Vol 23, No 12, pp 1983-1985, Dec 1985.

    Article  ADS  Google Scholar 

  7. Rizzi, A. “Three-Dimensional Solutions to the Euler Equations with One Million Grid Points”, AIAA Journal, Vol 23, No 12, pp 1986, Dec 1985.

    Article  MathSciNet  ADS  Google Scholar 

  8. Murman, E.M., Powell, K.G., Miller, D.S., and Wood, R.M., “Comparison of Computations and Experimental Data for Leading Edge Vortices - Effects of Yaw and Vortex Flaps”, AIAA Paper 86-0439, Jan 1986.

    Google Scholar 

  9. Rizetta, D.P. and Shang J.S. “Numerical Simulation of Leading-Edge Vortex Flows,” AIAA Paper 84-1544, June 1984.

    Google Scholar 

  10. Powell, K., Murman, E., Perez, E., and Baron, J. “Total Pressure Loss in the Vortical Solutions of the Conical Euler Equations,” AIAA Paper 85-1701, July 1985.

    Google Scholar 

  11. Newsome,R. and Thomas, J., “Computation of Leading-Edge Vortex Flows,” Paper presented at NASA Langley Vortex Flow Aerodynamics Conference, Hampton Va. October 1985.

    Google Scholar 

  12. Monnerie, B. and Werle, H., “Etude de l’Ecoulement Supersonique & Hypersonique Autour d’Une Aile Elancee en Incidence,” AGARD-CP-30, Paper 23, 1968.

    Google Scholar 

  13. Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time- Stepping Schemes,” AIAA-81-1259, June 1981.

    Google Scholar 

  14. Rizzi, A. and Eriksson, L.E., “Computation of Flow Around Wings Based on the Euler Equations,” Journal of Fluid Mechanics, November 1984.

    Google Scholar 

  15. Marconi, F., “The Spiral Singularity in the Supersonic Inviscid Flow over a Cone,” AIAA-83-1665, July 1983.

    Google Scholar 

  16. Vorropoulos, G. and Wendt, J. F. “Laser Velocimetry Study of Compressibility Effects on the Flow Field of a Delta Wing,” AGARD-CP-342, Paper 9, 1983.

    Google Scholar 

  17. Physical Measurements in Gas Dynamics and Combustion, Eds. R.W. Ladenburg, B.Lewis, R.N. Pease, H.S. Taylor, Princeton Univ. Press 1964.

    Google Scholar 

  18. Murman, E.M., “Computational Studies of Compressible Vortex Flows” MIT CFDL TR 86-04, Jan 1986.

    Google Scholar 

  19. Fujii, K. and Kutler, P., “Numerical Simulation of the Viscous Flow Fields Over Three-Dimensional Complicated Geometries,” AIAA Paper 84-1550, June 1984.

    Google Scholar 

  20. Buter, T.A. and Rizetta, D.P., “Steady Supersonic Navier-Stokes Solutions of a 75 degree Delta Wing at Angle of Attack,” Paper presented at NASA Langley Vortex Flow Aerodynamics Conference, Hampton Va. October 1985.

    Google Scholar 

  21. Newsome, R. W. and Adams, M.S., “Numerical Simulation of Vortical-Flow Over an Elliptical-Body Missile at High Angles of Attack”, AIAA Paper-86-0559, Jan 1986.

    Google Scholar 

  22. Miller, D.S. and Wood, R. M. “Lee-Side Flow Over Delta Wings at Supersonic Speeds,” NASA TP 2430, June 1985.

    Google Scholar 

  23. Verhaagen, N.G., “An Experimental Investigation of the Vortex Flow Over Delta and Double-Delta Wings at Low Speeds”, Paper 7, AGARD-CP-342, April 1983.

    Google Scholar 

  24. Payne, F.M., Ng, T.T., Nelson, R.C., and Schiff, L.B., “Visualization and Flow Surveys of the Leading Edge Vortex Structure on Delta Wing Planforms”, AIAA Paper 86-0330, Jan 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this paper

Cite this paper

Murman, E.M., Powell, K.G. (1987). Comparison of Measured and Computed Pitot Pressures in a Leading Edge Vortex from a Delta Wing. In: Hussaini, M.Y., Salas, M.D. (eds) Studies of Vortex Dominated Flows. ICASE NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4678-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4678-7_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96430-0

  • Online ISBN: 978-1-4612-4678-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics