Advertisement

Conformationally Restricted Analogues of Substance P

  • O. Ploux
  • S. Lavielle
  • G. Chassaing
  • S. Julien
  • A. Marquet
  • J-C. Beaujouan
  • Y. Torrens
  • L. Bergström
  • J. Glowinski
Conference paper

The three-dim-nsional structure of a peptide deduced from conformational analyses (nuclear magnetic resonance and circular dichroism spectroscopies) and/or from energy calculations should provide an insight into the structural requirements of the binding protein, if this structure has any relevance to the conformation which interacts with the binding protein. A decisive contribution to overcome this problem has been the design of constrained analogues of the peptide which simulate the predicted conformers. Indeed such rigidified analogues, if active, must contribute to a more accurate description of the bioactive conformation[l]. We have established, using NMR and CD spectroscopies, that the three-dimensional structure of SP is strongly influenced by its environment. The main features of the conformation model we have proposed are the flexibility of the N-terminal Arg-ProLys, the a-helical folding of the core of SP, Pro-Gln-Gln-Phe-Phe, and the folding of the C-terminal carboxamide towards the primary amides of Gin5 and Gln6 [2] The validity of this model has been checked by the means of constrained cyclic analogues of SP. Therefore, we have synthesized two groups of disulfide bridged analogues of SP.

Keywords

Cyclic Peptide Bioactive Conformation Primary Amide Cyclic Analogue Rigidify Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hruby VJ (1982) Conformational restrictions of biologically active pep tides via aminoacid side-chain groups. Life Sciences 31:189–199PubMedCrossRefGoogle Scholar
  2. 2.
    Chassaing G, Convert O, Lavielle S (1986) Preferential conformation of SP in solution. Eur J Biochem 154:77–85PubMedCrossRefGoogle Scholar
  3. 3.
    Nikiforovich GV, Balodis YuYu, Chipens GI (1981) Conformations of SP molecule. In:Brundfeldt K (ed) Peptides 1980, Proceedings of the 16th European Peptide Symposium, Copenhagen: Scriptor, 631–635Google Scholar
  4. 4.
    Manavalan P, Momamy FA (1982) Conformational energy calculations on SP. Int J Peptide and Protein Res 20:351–365CrossRefGoogle Scholar
  5. 5.
    Viger A, Beaujouan J-C, Torrens Y, Glowinski J (1983) Specific binding of al25 I-SP derivative to rat brain synaptosomeso J Neurochem 40:1030–1038.PubMedCrossRefGoogle Scholar
  6. 6.
    Beaujouan J-C, Torrens Y, Viger A, Glowinski J (1984) A new type of tachykinin binding site in the rat brain characterized by specific binding of a labeled eledoisin derivative. Mol Pharmacol 26:248–254PubMedGoogle Scholar
  7. 7.
    Buck SH, Burcher E, Shults CW, Lovenberg W, O’Donohue T (1984) Novel pharmacology of substance K-binding sites: A third type of tachykinin receptor. Science 226:987–989PubMedCrossRefGoogle Scholar
  8. 8.
    Regoli D, Mizhari J, D’Orléans Juste P, Dion S, Drapeau G, Esher E (1985) SP antagonists showing some selectivity for different receptor types. Eur J Pharmacol 109:121–129PubMedCrossRefGoogle Scholar
  9. 9.
    Neubert K, Mansfeld H-W, Jakkubbe H-D, Bergmann J (1979) Uber die Darstellung modifizierter Tachykinin Teilsequenzen Pharmazie 34:347–349.PubMedGoogle Scholar
  10. 10.
    Theodoropoulos D, Poulos C, Gatos D, Cordopatis P, Esher E, Mizhari J, Regoli D, Dalietos D, Furst A, Lee TD (1985) Conformationally restricted C-terminal peptides of SP. Synthesis, mass spectral analysis and pharmacological properties. J Med Chem 28:1536–1539PubMedCrossRefGoogle Scholar
  11. 11.
    Darman PS, Landis GC, Smits JR, Hirning LD, Gulya K, Yamamura HI, Burks TF, Hruby VJ (1985) Conformationally restricted analogue of SP: insight into the receptor binding process. Biochem Biophys Res Comm 127:656–662PubMedCrossRefGoogle Scholar
  12. 12.
    Sandberg BEB (1985) Structure activity relationship for SP: A review; In: Jordan CC and Oehme P (eds) Substance P: Metabolism and Biological actions, pp.65-8l. Taylor and Francis: London and PhiladelphiaGoogle Scholar
  13. 13.
    Chassaing G, Convert O, Lavielle S Conformationally analogy between SP and physalaemin. Biochim Biophys Acta (in press)Google Scholar
  14. 14.
    Lavielle S, Chassaing G, Julien S, Besseyre J, Marquet A, Beaujouan J-C, Torrens Y, Glowinski J (1986) Influence of the amino acids of SP in the recognition of its receptor: affinities of synthesized SP analogues for the specificl251-BHSP binding site on rat brain synaptosomes.Neuropeptides 7:191–200PubMedCrossRefGoogle Scholar
  15. 15.
    Lavielle S, Chassaing G, Julien S, Marquet A, Bergstrom L, Beaujouan J-C, Torrens Y, Glowsinki J (1986) Specific recognition of SP or NKB receptors by analogues of SP substituted at positions 8 and 9. Eur J Pharmacol (in press)Google Scholar
  16. 16.
    Rivier J, Kaiser R, Galyean B (1978) Solid-phase synthesis of somatostatin and glucagon-selective analogs in gram quantities. Biopolymers 17:1927–1938CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • O. Ploux
    • 1
  • S. Lavielle
    • 1
  • G. Chassaing
    • 1
  • S. Julien
    • 1
  • A. Marquet
    • 1
  • J-C. Beaujouan
    • 2
  • Y. Torrens
    • 1
  • L. Bergström
    • 1
  • J. Glowinski
    • 1
  1. 1.CNRS UA 493Université P. et MFrance
  2. 2.INSERM U 114Collège de FranceParisFrance

Personalised recommendations