Studies of Elastic and Electronically Inelastic Electron-Molecule Collisions

  • Marco A. P. Lima
  • Thomas L. Gibson
  • Luiz M. Brescansin
  • Vincent McKoy
  • Winifred M. Huo


Cross-sections for the scattering of low-energy electrons by molecules play an important role in the modeling of swarm and plasma etching systems, gas lasers, and planetary atmospheres. In contrast to the related atomic problem, the progress to date in both theoretical and experimental studies of electron-molecule scattering cross-sections has been limited [1]. On the theoretical side, this situation is primarily due to the additional complexities arising from the nonspherical potential fields of molecular targets. Most studies of electronic excitation of molecules by low-energy electrons have hence been carried out using low-order theories. These include plane-wave theories such as the Born Ochkur-Rudge approximations [2, 3], the impact-parameter method [4], and distorted-wave theories [5, 6]. Several studies of elastic scattering by molecules have also used local approximations to the nonlocal exchange potentials [7]. Although such theories and approximations can be computationally easy to apply, they do not contain enough of the collision physics to yield consistently reliable differential and integral cross sections, particularly at low and intermediate energies [8]. What is clearly needed are theoretical methods which can provide quantitatively reliable cross-sections for the elastic and inelastic scattering of low-energy electrons by molecules.


Closed Channel Electron Impact Excitation High Partial Wave Scatter Wave Function Plasma Etching System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See, for example, Trajmar, S.; Register, D. F.; Chutjian, A. Phys. Repts. 1983, 97, 219.ADSCrossRefGoogle Scholar
  2. [2]
    Chung, S.; Lin, C. C.; Lee, E.T. Phys. Rev. A 1975, 12, 1340.ADSCrossRefGoogle Scholar
  3. [3]
    Cartwright, D. C.; Kuppermann, A. Phys. Rev. 1967, 163, 86.ADSCrossRefGoogle Scholar
  4. [4]
    Hazi, A. U. Phys. Rev. A 1981, 23, 2232.ADSCrossRefGoogle Scholar
  5. [5]
    Rescigno, T. N.; McCurdy, C.W., Jr.; McKoy, V. J. Phys. B. 1974, 7, 2396.ADSCrossRefGoogle Scholar
  6. [6]
    Fliflet, A. W.; McKoy, V. Phys. Rev. A 1980, 21, 1863.ADSCrossRefGoogle Scholar
  7. [7]
    See, for example, Collins, L. A.; Robb, W. D.; Norcross, D. W. Phys. Rev. A 1979, 20, 1838.ADSCrossRefGoogle Scholar
  8. [8]
    Cartwright, D. C.; Chutjian, A.; Trajmar, S.; Williams, W. Phys. Rev. A 1977, 16, 1013.ADSCrossRefGoogle Scholar
  9. [9]
    Lippmann, B. A.; Schwinger, J. Phys. Rev. 1950, 79, 469.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    Geltman, S. “Topics in Atomic Collision Theory”; Academic Press: New York, 1969; p. 99.Google Scholar
  11. [11]
    Maleki, N.; Macek, J. Phys. Rev. 1980, 21, 1403.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Feshbach, H. Ann. Phys. (N. Y.) 1962, 19, 287.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    Gibson, T. L.; Lima, M. A. P.; Huo, W. M.; McKoy, V. Phys. Rev. A (to be published).Google Scholar
  14. [14]
    Lima, M. A. P.; Gibson, T. L.; Takatsuka, K.; McKoy, V. Phys. Rev. A 1984, 30, 1741.ADSCrossRefGoogle Scholar
  15. [15]
    See, for example, Schneider, B. I.; Collins, L. A. Phys. Rev. A 1983, 27, 2847.ADSCrossRefGoogle Scholar
  16. [16]
    Klonover, A.; Kaldor, U. J. Phys. B 1978, 11, 1623.ADSCrossRefGoogle Scholar
  17. [17]
    Gibson, T. L.; Lima, M. A. P.; Takatsuka, K.; McKoy, V. Phys. Rev. A (1984) 30, 3005.ADSCrossRefGoogle Scholar
  18. [18]
    Srivastava, S. K.; Chutjian, A.; Trajmar, S. J. Chem. Phys. 1975, 63, 2659. The results shown here are the renormalized values given in Table 4b of Ref.1.ADSCrossRefGoogle Scholar
  19. [19]
    Gibson, T. L.; Morrison, M. A. Phys. Rev. A 1984, 29, 2497.Google Scholar
  20. [20]
    Jones, R.; Bonham. R. A. as given in Table 2a of Ref.1.Google Scholar
  21. [21]
    Khakoo, M. A.; McAdams, Trajmar, S. “Electron Impact Excitation Cross-Sections for the b3+ u: State of H2” Phys. Rev. A (submitted for publication).Google Scholar
  22. [22]
    Khakoo, M. A.; Trajmar, S. “Electron Excitation of the a3+ g, B1∑u+, c3лu C1лu, and E(F)l+ g States of H2” Phys. Rev. A (submitted for publication).Google Scholar
  23. [23]
    Schneider, B. I.; Collins, L. A. J. Phys. B 1985, 18, L857.ADSCrossRefGoogle Scholar
  24. [24]
    Baluja, K. L.; Noble, C. J.; Tennyson, J. J. Phys. B 1985, 18, L851.ADSCrossRefGoogle Scholar
  25. [25]
    Hall, R. I.; Andric, L. J. Phys. B 1984, 17, 3815.ADSCrossRefGoogle Scholar
  26. [26]
    Nishimura, H. (private communication)Google Scholar
  27. [27]
    Lima, M. A. P.; Gibson, T. L.; Huo, W. M.; McKoy, V. J. Phys. B 1985, 18, L865. This paper and those of references 23 and 24 appeared as companion publications.ADSCrossRefGoogle Scholar
  28. [28]
    Chung, S.; Lin, C. C. Phys. Rev. A 1978, 17, 1874.ADSCrossRefGoogle Scholar
  29. [29]
    Lee, M.-T.; Lucchese, R. R.; McKoy, V: Phys. Rev. A 1982, 26, 3240.ADSCrossRefGoogle Scholar
  30. [30]
    Srivastava, S. K.; Jensen, S. J. Phys. B 1977, 10, 3341.ADSCrossRefGoogle Scholar
  31. [31]
    Lima, M. A. P.; Gibson, T. L.; Huo, W. M.; McKoy, V. Phys. Rev. A 1985, 32, 2696.ADSCrossRefGoogle Scholar
  32. [32]
    Tanaka, H.; Okada, T.; Boesten, L.; Suzuki, T.; Yamamoto, T.; Kubo, M. J. Phys. B 1982, 15, 3305.ADSCrossRefGoogle Scholar
  33. [33]
    Abusalbi, N.; Eades, R. A.; Nam, T.; Thirumalai, D.; Dixon, D. A.; Truhlar, D. G. J. Chem. Phys. 1983, 78, 1213.ADSCrossRefGoogle Scholar
  34. [34]
    Jain, A. J. Chem. Phys. 1984, 81, 724.ADSCrossRefGoogle Scholar
  35. [35]
    Vŭskovic, L.; Trajmar, S. J. Chem. Phys. 1983, 78, 4947.ADSCrossRefGoogle Scholar
  36. [36]
    Jain, A.; Thompson, D. G. J. Phys. B 1982, 15, L631.ADSCrossRefGoogle Scholar
  37. [37]
    Jones, R. K. J. Chem. Phys. 1985, 82, 5424.ADSCrossRefGoogle Scholar
  38. [38]
    Private communication (A. Jainr)Google Scholar
  39. [39]
    See, for example, Norcross, D. W.; Collins, L. A. “Adv. Atomic and Molecular Physics”; Academic Press, New York, 1982; 18, 341.Google Scholar
  40. [40]
    Jung, K.; Antoni, Th.; Muller, R.; Kochem, K. H.; Ehrhardt, H. J. Phys. B 1982, 15, 3535.ADSCrossRefGoogle Scholar
  41. [41]
    Danjo, A.; Nishimura, H. Phys. Soc. Japan 1985, 54, 1224.ADSCrossRefGoogle Scholar
  42. [42]
    Brescansin, L. M.; Lima, M. A. P.; Huo, W. M.; Gibson, T. L.; McKoy, V. Phys. Rev. A (to be published).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Marco A. P. Lima
    • 1
    • 2
  • Thomas L. Gibson
    • 1
    • 3
  • Luiz M. Brescansin
    • 1
    • 4
  • Vincent McKoy
    • 1
  • Winifred M. Huo
    • 5
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Instituto de Estudos AvancadosCentro Técnico AeroespacialSao PauloBrazil
  3. 3.Department of PhysicsTexas Tech UniversityLubbockUSA
  4. 4.Instituto de Física “Gleb Wataghin” Universidade Estadual de CampinasSão PauloBrazil
  5. 5.University of Notre DameNotre DameUSA

Personalised recommendations