On the Existence of Embedded Minimal Surfaces of Higher Genus with Free Boundaries in Riemannian Manifolds

  • Jürgen Jost


In this chapter we consider the following configuration: a Riemannian manifold X of bounded geometry, some closed Jordan curves Γ j , and a supporting surface ∂K, disjoint from the Γ j . We further assume that the Γ j are contained in a suitable barrier ∂A of nonnegative mean curvature (cf. §2 for details).




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Almgren Jr. and L. Simon, Existence of embedded solutions of Plateau’s problem, Ann. Sc. N. Pisa (iv), 6 (1979), 447–495.MathSciNetMATHGoogle Scholar
  2. [2]
    M. Freedman, J. Hass, and P. Scott, Least area incompressible surfaces in 3-manifolds, Inv. Math., 71 (1983), 609–642.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    M. Grüter and J. Jost, Allard type regularity results for manifolds with free boundaries, Ann. Sci. Norm. Sup. Pisa. In press (1986).Google Scholar
  4. [4]
    E. Heinz and S. Hildebrandt, Remarks on minimal surfaces in Riemannian manifolds, CPAM 23 (1970), 371–377.MathSciNetMATHGoogle Scholar
  5. [5]
    J. Jost, Harmonic maps between surfaces, Lecture Notes in Mathematics, Springer-Verlag, New York, 1062 (1984).MATHCrossRefGoogle Scholar
  6. [6]
    J. Jost, Conformal mappings and the Plateau-Dougles problem, J. Reine Angew. Math., 359 (1985), 37–54.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J. Jost, Existence results for embedded minimal surfaces of controlled topological type I, Ann. Sci. Norm. Sup. Pisa. In press (1986).Google Scholar
  8. [8]
    J. Jost, On the regularity of minimal surfaces with free boundaries in Riemannian manifolds, Man. Math. (to appear).Google Scholar
  9. [9]
    J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Man. Math., 40 (1982), 27–77.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    W. Meeks III, L. Simon, and S.T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. Math., 116 (1982), 621–659.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W. Meeks III and S.T. Yau, The classical Plateau problem and the topology of three-dimensional manifolds, Top. 21 (1982), 409–442.MathSciNetMATHGoogle Scholar
  12. [12]
    W. Meeks III and S.T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., 179 (1982), 151–168.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D. Mumford, A remark on Mahler’s compactness theorem, Proc. AMS, 28 (1971), 289–294.MathSciNetMATHGoogle Scholar
  14. [14]
    R. Schoen and S.T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with nonnegative scalar curvature, Ann. Math., 110 (1979), 127–142.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    K. Sehüffler, Indextheorie für Minimalflächen vom Geschlecht 1 (to appear).Google Scholar
  16. [16]
    K. Strebel, Ein Klassifizierungsproblem für Riemannsche Flächen vom Geschlecht 1 (to appear).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Jürgen Jost

There are no affiliations available

Personalised recommendations