Skip to main content

Plasticity in Control Systems for Insect Feeding Behavior

  • Conference paper
Perspectives in Chemoreception and Behavior

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The insect nervous system has provided excellent material for cellular and biochemical studies of neural information processing and integration. In particular, the physiological study of chemoreception in insects is more advanced than in any other animal group, in no small measure due to the seminal stimulation provided by V.G. Dethier (1955, 1976). In addition, the comparative physiology of the neural control systems regulating feeding behavior also received great impetus from Dethier’s work, particularly the viewpoint that insect-vertebrate comparisons could usefully illuminate general issues pursued by both groups (Dethier 1982; Moss and Dethier 1983; Dethier and Bowdan 1984). A very natural question arises as to the reality and extent of learned adjustments to the feeding control systems of insects. The remarkable learning skills of the honeybee provide a dramatic example of the sophisticated computational ability of some insect nervous systems and encourage the view that learning questions posed in ethologically relevant terms might reveal learning of a high order in other insect species, including flies. During the last 20 years there has been a veritable explosion of work with mammals on food-assessment learning mechanisms, using behavioral paradigms that are readily adapted to insects. Thus the stage is set to assess the learning abilities of flies and a variety of other insect species in ways that both pose the learning question in terms natural to the animars Umwelt and facilitate comparisons with analogous results from the mammalian learning literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WB, Benson JA (1985) The generation and modulation of endogenous rhythmicity in the Aplysia bursting pacemaker neuron R15. Prog Biophys Mol Biol 46: 1–49

    Article  PubMed  CAS  Google Scholar 

  • Barton Browne L (1968) Effects of altering the composition and volume of the haemolymph on water ingestion of the blowfly, Lucilia cuprina. J Insect Physiol 14: 1603–1620

    Google Scholar 

  • Belzer WR (1978) Recurrent nerve inhibition of protein feeding in the blowfly Phorlnia regina.Physiol Entomol 3:259–263

    Article  CAS  Google Scholar 

  • Belzer WR (1979) Abdominal stretch in the regulation of protein ingestion by the black blowfly Phorlnia regina.Physiol Entomol 4:7–13

    Article  CAS  Google Scholar 

  • Bennettova-Rezabova B (1972) The regulation of vitellogenesis by the central nervous system in the blowfly Phormia regina.Acta Entomol Bohemoslov 69:78–88

    Google Scholar 

  • Bernays EA, Simpson SJ (1982) Control of food intake. Adv Insect Physiol 16:59–118

    Article  Google Scholar 

  • Bowdan E (1981) Activity of female blowflies (Phormia regina) in response to novel odours. Entomol Exp Appl 29:297–304

    Article  Google Scholar 

  • Bowdan E, Dethier VG (1986) Coordination of a dual inhibitory system regulating feeding behavior in the blowfly. J Comp Physiol 158A:713–722

    Article  Google Scholar 

  • Brookhart GL, Edgecomb RSA, Murdock LL (1985) Brain biogenic amines and blowfly feeding behavior. Soc Neurosci Abstr 11:368

    Google Scholar 

  • Dethier VG (1955) The physiology and histology of contact chemoreceptors of the blowfly. Q Rev Bioi 30:348–371

    Article  CAS  Google Scholar 

  • Dethier VG (1961) The role of olfaction in alcohol ingestion by the blowfly. J Insect Physiol 6:222–230

    Article  CAS  Google Scholar 

  • Dethier VG (1966) Insects and the concept of motivation. In: Levine D (ed) Nebraska Symposium on Motivation. University of Nebraska Press, Lincoln, pp 105–136

    Google Scholar 

  • Dethier VG (1976) The Hungry Fly. Harvard University Press, Cambridge

    Google Scholar 

  • Dethier VG (1980) Food aversion learning in two polyphagous caterpillars, Diacrisia virginica and ESfiglnene congrua.Physiol Entomol 5:321–325

    Article  Google Scholar 

  • Dethier VG (1981) Fly, rat and man: the continuing quest for an understanding of behavior.Proc Am Philos Soc 125:460–466

    Google Scholar 

  • Dethier VG (1982) The contributions of insects to the study of motivation. In: Morrison AR, Strick PL (eds) Changing Concepts of the Nervous System. Academic Press, New York, pp 445–455

    Google Scholar 

  • Dethier VG, Bodenstein D (1958) Hunger in the blowfly. Z Tierpsychol 15:129–140

    Article  Google Scholar 

  • Dethier VG, Bowdan E (1984) Relations between differential threshold and sugar receptor mechanisms in the blowfly. Behav Neurosci 98:791–803

    Article  Google Scholar 

  • Dethier VG, Hanson FE (1965) Taste papillae of the blowfly. J Cell Comp Physiol 65:93–100

    Article  CAS  Google Scholar 

  • Dudai Y (1977) Properties of learning in Drosophila melanogasfer.J Comp Physiol 114:69–89

    Article  Google Scholar 

  • Edgecomb B (1985) Neural correlates and regulation of feeding behavior in the blowfly Phorlnia regina.Ph.D. Thesis, Purdue University

    Google Scholar 

  • Evans DR, Mellon DeF (1962a) Electrophysiological studies of a water receptor associated with the taste sensilla of the blowfly. J Gen Physiol 45:487–500

    Article  PubMed  CAS  Google Scholar 

  • Evans DR, Mellon DeF (1962b) Stimulation of a primary taste receptor by salt. J Gen Physiol 45:651–661

    Article  PubMed  CAS  Google Scholar 

  • Fukushi T (1983) The role of learning on the finding of food in the searching behavior of the house fly, Musca donzesfica.Entomol Gen 8:241–250

    Google Scholar 

  • Fukushi T (1985) Visual learning in walking blowflies, Lucilia cuprina.J Comp Physiol 157A:771–77R

    Article  CAS  Google Scholar 

  • Gelperin A (1966a) Control of crop emptying in the blowfly. J Insect Physiol 12:331–345

    Article  CAS  Google Scholar 

  • Gelperin A (1966b) Investigations of a foregut receptor essential to taste threshold regulation in the blowfly. J Insect Physiol 12:829–841.

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A (1967) Stretch receptors in the foregut of the blowfly. Science 157: 208–210

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A (1971a) Abdominal sensory neurons providing negative feedback to the feeding behavior of the blowfly. Z Vgl Physiol 72: 17–31

    Article  Google Scholar 

  • Gelperin A (1971b) Regulation of feeding. Annu Rev Entomol 16:365–378

    Article  Google Scholar 

  • Gelperin A (1972) Neural control systems underlying insect feeding behavior. Am Zool 12:489–496

    Google Scholar 

  • Gelperin A, Dethier VG (1967) Long-term regulation of sugar intake by the blowfly.Physiol Zool 40:218–228

    Google Scholar 

  • Gelperin A, Hopfield JJ, Tank DW (1985) The logic of Lifnax learning. In: Selverston AI (ed) Model Neural Networks and Behavior. Plenum Press, New York, pp 237–262

    Google Scholar 

  • Getting PA (1971) The sensory control of motor output in fly proboscis extension. Z Vgl Physiol 74: 103–120

    Article  Google Scholar 

  • Getting PA, Steinhardt RA (1972) The interaction of external and internal receptors on the feeding behavior of the blowfly, Phormia regina.J Insect Physiol 18: 1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Gillary HL (1966) Stimulation of the salt receptor of the blowfly. III. The alkali halides.J Gen Physiol 50:359–368

    Article  CAS  Google Scholar 

  • Hall MJR (1980) Circadian rhythm of proboscis extension responsiveness in the blowfly: central control of threshold change. Physiol Entomol 5:223–233

    Article  Google Scholar 

  • Hassell MP, May RM (1974) Aggregation of predators and insect parasites and its effect on stability. J Anim Ecol 43:567–594

    Article  Google Scholar 

  • Hodgson ES (1957) Electrophysiological studies of arthropod chemoreception. II. Responses of labellar chemoreceptors of the blowfly to stimulation by carbohydrates. J Insect Physiol 1:240–247

    Article  Google Scholar 

  • Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122:417–418

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ, Tank DW (1986) Neural circuits and collective computation. Science 233:625–633

    Article  PubMed  CAS  Google Scholar 

  • Jermy T, Bernays EA, Szentesi A (1982) The effect of repeated exposure to feeding deterrents on their acceptability to phytophagous insects. In: Visser JH, Minks AK(eds) Proceedings of the Fifth International Symposium on Insect-Plant Relationships.Pudoc, Wageningen, pp 25–32

    Google Scholar 

  • Kacelnik A, Krebs JR (1985) Learning to exploit patchily distributed food. In: Silby RM. Smith RH (eds) Behavioral Ecology. Blackwell, Oxford, pp 189–205

    Google Scholar 

  • Long TF. Murdock LL (1983) Stimulation of blowfly feeding behavior by octopaminergic drugs. Proc Natl Acad Sci USA 80:4159–4163

    Article  PubMed  CAS  Google Scholar 

  • Long TF, Edgecomb RS, Murdock LL (1986) Effects of substituted phenylethylamines on blowfly feeding behavior. Comp Biochem Physiol 83C:201–209

    Article  CAS  Google Scholar 

  • McCutchan MC (1969) Response of tarsal chemoreceptive hairs of the blowfly, Phorlnia regina.J Insect Physiol 15:2058–2068

    Article  Google Scholar 

  • McGuire TR (1984) Learning in three species of Diptera: the blowfly Phorlnia regina, the fruitfly Drosophila, melanogaster and the housefly Musca domestica. Behav Genet 14:479–526

    Article  PubMed  CAS  Google Scholar 

  • McGuire TR, Friedman L (1985) Octopamine may mediate central excitatory state response in the blowfly. Soc Neurosci Abstr 11:367

    Google Scholar 

  • Moss CF, Dethier VG (1983) Central nervous system regulation of finicky feeding by the blowfly. Behav Neurosci 97:541–548

    Article  PubMed  CAS  Google Scholar 

  • Nelson MC (1971) Classical conditioning in the blowfly (Phornia regina):Associative and excitatory factors. J Comp Physiol Psychol 77:353–368

    Article  PubMed  CAS  Google Scholar 

  • Omand E, Dethier VG (1969) An electrophysiological analysis of the action of carbohydrates on the sugar receptors of the blowfly. Proc Natl Acad Sci USA 62: 136–143

    Article  PubMed  CAS  Google Scholar 

  • Pollack GS (1977) Labellar lobe spreading in the blowfly: regulation by taste and satiety.J Comp Physiol 121:115–134

    Article  Google Scholar 

  • Prokopy RJ, Papaj DR, Cooley SS, Kallet C (1985) On the nature of learning in oviposition site acceptance by apple maggot flies. Anim Behav 34:98–107

    Article  Google Scholar 

  • Quinn WG, Dudai Y (1976) Memory phases in Drosophila.Nature 262:576–577

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Greenspan RJ (1984) Learning and courtship in (Drosophila):two stories with mutants. Annu Rev Neurosci 7:67–93

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila lnelanogaster.Proc Natl Acad Sci USA 71:708–712

    Article  PubMed  CAS  Google Scholar 

  • Rachman NJ (1979) The sensitivity of the labellar sugar receptors of Phormia regina in relation to feeding. J Insect Physiol 25:733–740

    Article  Google Scholar 

  • Rachman NJ (1980) Physiology of feeding preference patterns of female black blowflies Phormia regina).The role of carbohydrate reserves. J Comp Physiol 139:59–66

    Article  CAS  Google Scholar 

  • Simpson SJ, Bernays EA (1983) The regulation of feeding: locusts and blowflies are not so different from mammals. Appetite 4:313–346

    PubMed  CAS  Google Scholar 

  • Spatz H-Ch, Emanns A, Reichert H (1974) Associative learning of Drosophila lnelanogaster.Nature 248:356–361

    Article  Google Scholar 

  • Stoffolano JG (1973) Effect of age and diapause on the mean impulse frequency and failure to generate impulses in labellar chemoreceptor sensilla of Phormia regina.J Gerontol 28:35–39

    PubMed  Google Scholar 

  • Taylor RJ (1974) Role of learning in insect parasitism. Ecol Monogr 44:89–104

    Article  Google Scholar 

  • Thomson AJ (1975) Regulation of crop contraction in the blowfly, Phormia regina.Can J Zool 53:451–455

    Article  PubMed  CAS  Google Scholar 

  • Thomson AJ, Holling CS (1977) A model of carbohydrate nutrition in the blowfly Phonnia regina.Can Entomol 109: 1181–1198

    Article  CAS  Google Scholar 

  • Tully T (1984) Drosophila learning: behavior and biochemistry. Behav Genet 14:527–557

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster.J Comp Physiol 157A:263–277

    Article  CAS  Google Scholar 

  • Wilczek M (1967) The distribution and neuroanatomy of the labellar sense organs of the blowfly, Phormia regina.J Morphol 122: 175–202

    Article  PubMed  CAS  Google Scholar 

  • Wolbarsht ML, Dethier VG (1958) Electrical activity in the chemoreceptors of the blowfly. Responses to chemical and mechanical stimulation. J Gen Physiol 42:393–412

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this paper

Cite this paper

Gelperin, A. (1987). Plasticity in Control Systems for Insect Feeding Behavior. In: Chapman, R.F., Bernays, E.A., Stoffolano, J.G. (eds) Perspectives in Chemoreception and Behavior. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4644-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4644-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9096-4

  • Online ISBN: 978-1-4612-4644-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics