Advertisement

Molecular Biological Search for Human Genes Encoding Cholinesterases

  • Hermona Soreq
  • Averell Gnatt
Part of the Molecular Neurobiology book series (MN)

Abstract

Cholinesterases (ChEs) are highly polymorphic proteins, capable of rapidly hydrolyzing the neurotransmitter acetylcholine and involved in terminating neurotransmission in neuromuscular junctions and cholinergic synapses. In an attempt to delineate the structure and detailed properties of the human protein(s) and the gene(s) coding for the acetycholine hydrolyzing enzymes, a human cDNA coding for ChE was isolated by use of oligodeoxynucleotide screening of cDNA libraries. For this purpose, a method for increasing the effectiveness of oligonucleotide screening by introducing deoxyinosine in sites of codon ambiguity and using tetra-methyl-ammonium salt washes to remove false-positive hybrids was employed. The resulting isolated 2.4-kilobase (kb) Cholinesterase cDNA sequences encode for the entire mature secretory protein, preceded by an N-terminal signal peptide. The human ChE primary sequence shows almost no homology to other serine hydrolases, with the exception of a hexapeptide at the active site. In contrast, it displays extensive homology with acetycholinesterase form Torpedo californica and Drosophila melanogaster as well as with bovine thyroglob-ulin. These extensive homologies probably suggest the need of the entire coding sequence for the physiological function(s) fulfilled by the enzyme and further suggest a common, unique, ancestral gene for these cDNAs. In turn, the cDN A was used as a probe to isolate genomic DNA sequences for the 5′-region of the human ChE gene. The genomic DNA fragment encoding part of the 5′-region of ChEcDNA was detected by DNA blot hybridization, enriched 70-fold by gel electrophoresis and electroelution, cloned in λ phage and isolated. Sequencing of the cloned DNA revealed that it did indeed include part of the 5′-region of ChEcDNA, starting at an adjacent 5′-position to the nucleotides coding for the initiator methionine, and ending with an EcoRI restriction site inherent to the ChEcDNA sequence. The isolated fragment of the human Cholinesterase gene is currently employed to complete the structural characterization of this and related genes.

Index Entries

Human genes encoding cholinesterases Cholinesterase protein polymorphism neurotransmission acetylcholine butyrylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge W. N. and Reiner E. (1972) Enzyme Inhibitors as Substrates. North-Holland, Amsterdam.Google Scholar
  2. Alles G. A. and Hawes R. C. (1940) Cholinesterases in the blood of man. J. Biol Chem. 133, 375–390.Google Scholar
  3. Amara S. G., Arriza J. S., Leff S. E., Swanson L. W., Evans R. M., and Rosenfeld, M. G. (1985) Neuropeptide homologous to calcitonin-gene related peptide.Google Scholar
  4. Anglister L. and Silman I. (1978) Molecular structure of elongated forms of electric eel acetylcholinesterase. J. Mol. Biol. 125, 293–311.PubMedCrossRefGoogle Scholar
  5. Atack J. R., Perry E. K., Bonham J. R., Perry R. H., Tomlinson B. E., Blessed G., and Fairbairn A. (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer Type: Selective loss of the intermediate (10S) form. Neurosci. Lett. 40, 199–204.PubMedCrossRefGoogle Scholar
  6. Arias S., Rolo M., and Gonzalez N. (1985) Gene dosage effect present in trisomy 3q25.2-qter for serum Cholinesterase (ChE1) and absent for transferrin (TF) and ceruloplasmin (CP). Cytagenet. Cell Genet. 40, 571Google Scholar
  7. Austin L. and Berry W. K. (1953) Two selective inhibitors of Cholinesterase. Biochem. J. 54, 695–700.PubMedGoogle Scholar
  8. Bause E. (1983) Structural requirements of N-glyco-sylation of proteins. Biochem. J. 209, 331–336.PubMedGoogle Scholar
  9. Bonham J. R. and Atack J. R. (1983) A neural tube defect specific form of acetylcholinesterase in amniotic fluid. Clin. Chem. Acta 135, 233–237.CrossRefGoogle Scholar
  10. Brock D. J. H. and Bader P. (1983) The use of commercial antisera in resolving the Cholinesterase bands of human amniotic fluids. Clin. Chem. Acta 127, 419–422.CrossRefGoogle Scholar
  11. Brown T., Kennard O., Kneale G., and Rabinovitch D. (1985) High-resolution structure of a DNA helix containing mismatched base pairs. Nature 315, 604–606.PubMedCrossRefGoogle Scholar
  12. Burstein, S. A., Adamson, J. W., and Waker, L. A. (1980) Megakaryocytopoiesis in culture: Modulation by cholinergic mechanisms. J. Cell Physiol. 103, 201–208.PubMedCrossRefGoogle Scholar
  13. Chen H. R., Dayhoff M. O., Baker W. C., Hunt L. T., Yen L. S., George D. G., and Orcutt B. C. (1982) Nucleic acid sequence data-base IV. DNA 1, 365–374.PubMedCrossRefGoogle Scholar
  14. Claudio T., Ballivet M., Patrick J., and Heinemann S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor α-subunit. Proc. Natl. Acad. Sci. USA 80, 1111–1114.PubMedCrossRefGoogle Scholar
  15. Coates P. M. and Simpson N. E. (1972) Genetic variation in human erythrocyte acetylcholinesterase. Science 175, 1466–1477.PubMedCrossRefGoogle Scholar
  16. Coyle J. T., Price D. L., and DeLong M. R. (1983) alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219, 1184–1190.PubMedCrossRefGoogle Scholar
  17. Culotti J. C., Von Ehrenstein G., Culotti M. R., and Russell R. L. (1981) A second class of Ace-tylcholinesterase-deficient mutants of the nematode Caenorhabditis Elegans. Genetics 97, 281–305.PubMedGoogle Scholar
  18. Dayhoff M. O. (1978) Atlas of Protein Sequence and structure, vol. 5„ suppl. 3, National Biomedical Research Foundation.Google Scholar
  19. Dohet C., Wagner R., and Radman M. (1985) Repaire of defined single base-paire mismatches in Eschericia coli. Proc. Natl. Acad. Sci. USA 82, 503–505.PubMedCrossRefGoogle Scholar
  20. Doolittle R. F. (1985) The Proteins. Sci Am. 253, 74–83.CrossRefGoogle Scholar
  21. Drews E. (1975) Cholinesterase in embryonic development. Prog. Histochem. Cytochem. 7, 1–52.PubMedGoogle Scholar
  22. Dreyfus P. A., Rieger F., and Pincon-Raymond M. (1983) Acetylcholinesterase of mammalian neuromuscular junctions: Presence of tailed asymmetric acetylcholinesterase in synaptic basal lamina and sarcolemma. Proc. Natl Acad. Sci. USA 80, 6698–6702.PubMedCrossRefGoogle Scholar
  23. Dutta-Choudhury T. A. and Rosenberry T. (1984) Human erythrocyte acetylcholinesterase is an amphipathic protein whose short membrane-binding domain is removed by papain digestion J. Biol. Chem. 259, 5653–5660.PubMedGoogle Scholar
  24. Dzjiegielewska K. M., Saunders N. R., Schejter R. J, Zakut H., Zevin-Sonkin D., Zisling R., and Soreq H. (1986) Synthesis of plasma proteins in fetal, adult, and neoplastic human brain tissue. Dev. biol. 115, 93–104CrossRefGoogle Scholar
  25. Evans D. H. and Morgan A. R. (1986) Characterization of imperfect DNA duplexes containing unpaired bases and non-Watson-Crick base pairs. Nucl Acids Res. 14, 4267–4280.PubMedCrossRefGoogle Scholar
  26. Fishman E. B., Siek G. C., MacCallum R. D., Bird E. D., Volicer L., and Marquis J. K. (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: Alterations in Dementia of the Alzheimer type. Ann. Neurol., in press.Google Scholar
  27. Futerman A. H., Low M. G., and Silman I. (1985) A hydrophobic dimer of acetylcholinesterase from Torpedo californica electric organ is solubilized by phsophatidylinostiol-specific phospholipase C. Neuroscl Lett. 40, 58–89.Google Scholar
  28. Futerman A. H., Barton P. L., Fiorini R. M., Low M. G., Sherman W. R., and Silman I. (1986) the involvement of phosphatidylinositol in the anchoring of hydrophobic forms of acetylcholinesterase to the plasma membrane, in Molecular basis of nerve activity (Changeux, Hucho, Maelicke, and Neumann, eds.), Walter de Gruyter, Berlin, New York, pp. 635–650.Google Scholar
  29. Gnatt A. (1986) The isolation and characterization of human Cholinesterase cDNA and genomic sequences. M. Sc. Thesis, The Weizmann Institute of Science.Google Scholar
  30. Grassi J., Vigny M., and Massoulie J. (1982) Molecular forms of acetylcholinesterase in bo vine caudate nucleus and surperior cervical ganglion: Solubility properties and hydrophobic character. J. Neurochem. 38, 457–469.PubMedCrossRefGoogle Scholar
  31. Haas, R. and Rosenberry T. L. (1985) Quantitative identification of N-terminal amino acids in proteins by radiolabeled reductive methylation and amino acid analysis: Application to human erythrocyte acetylcholinesterase. Anal. Bio. Chem. 148, 74–77.Google Scholar
  32. Hall J. C. (1982) Genetics of the nervous system in Drosophila. Q. Rev. Biophy. 15, 3–479.Google Scholar
  33. Hall J. C. and Spierer P. (1987) The ACE locus of Drosophila melanogaster: Structural gene for Acetylcholinesterase with an unusual 5′ leader. EMBO J. 34, in press.Google Scholar
  34. Heijne G. V. (1985) Signal sequence: the limits of variation. J. Mol Biol. 184, 99–105.CrossRefGoogle Scholar
  35. Hobbiger F. (1963) Reactivation of phosphorylated acetylcholinesterase, in Cholinesterases and Anticholinesterase Agents, (Koelle G. B., ed.), (Springer, Berlin), pp. 921–988.Google Scholar
  36. Hodgkin W.E., Giblett E.R., Levine H., Bauer W., and Motulsky A. G. (1985) Complete pseudocholin-esterase deficiency: Genetic and immunologic characterization. J. Clin. Invest. 44, 486–497.CrossRefGoogle Scholar
  37. Hopp T. P. and Woods K. R. (1981) Prediction of protein antigenic determinants from amino acid sequences. Prot. Natl Acad. Sci. USA 78, 38. 3824–3828.CrossRefGoogle Scholar
  38. Huerre C., Uzan G., Greschik K. H., Weil D., Levin M., Hors-Cayla M. C., Boue J., Kahn A., and Junien C. (1984) The structural gene for transferrin TF maps to 3q21–3qter. Ann. Genet. 40, 107–127.Google Scholar
  39. Hunter W. N., Brown T., Anand N. N., and Kennard O. (1986) Structure of an adenine-cytosine base pair in DNA and its design implications. Nucl. Acids Res. 13, 8927–8938.Google Scholar
  40. Jedrzejczyk J., Silman I., Lai J., and Barnard E. A. (1984) Molecular forms of acetylcholinesterase in synaptic and extrasynaptic regions of avian tonic muscle. Neurosci. Lett. 46, 283–289.PubMedCrossRefGoogle Scholar
  41. Johnson C. D. and Russell R. L. (1983) Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J. Neurochem. 41, 30–36.PubMedCrossRefGoogle Scholar
  42. Johnson C. D., Duckett J. G., Culotti J. G., Herman R. K., Meneely P. M., and Russell R. L. (1981) An acetylcholinesterase-deficient mutant of the nematode Caenorhabditis elegans. Genetics 97,261–279.Google Scholar
  43. Kalow W. and Gunn D. R. (1959) Some statistical data on atypical Cholinesterase of human serum. Ann. Hum. Genet (Lond.) 23, 239–248.PubMedCrossRefGoogle Scholar
  44. Karnovsky M. J. and Roots L. (1964) A direct-coloring’ thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221.PubMedCrossRefGoogle Scholar
  45. Kidd K.K. and Gusella J.(1985)Reportofthecommit-tee on the genetic constitution of chromosomes 3 and 4. Cytogenet. Cell Genet 40, 107–127.Google Scholar
  46. Klose R. and Gustensohn G. (1976) Treatment of alkyl phosphate poisoning with purified serum Cholinesterase. Prakl. Asasthe. 11, 1–7.Google Scholar
  47. Koelle G. B. (1972) Anticholinesterase agents, in (Goodman L. S. and Gilman A., eds.), Fifth ed., McMillan, NY, pp. 445–466.Google Scholar
  48. Kolson D. L. and Russell R. L. (1985a) New acetylcholinesterase deficient mutants of the nematode Caenorhabditis elegans. J. Neurogenet 2, 69–91.PubMedCrossRefGoogle Scholar
  49. Kolson D. L. and Russell R. L. (1985b) A novel class of acetylcholinesterase, revealed by mutation in the nematode Caenorhabitis elegans. J. Neurogenet. 2, 93–110.CrossRefGoogle Scholar
  50. Kubo T., Fukuda K., Milkami A., Maeda A., Takahashi H., Mishina M., Hatga T., Haga K., Ichiyama A., Kanagawa K., Kojima M., Matsuo H., Hirose T., and Numa S. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.PubMedCrossRefGoogle Scholar
  51. Lathe R. (1985) Synthetic oligonucleotide probes deduced fromamino acid sequence data: Theoretical and practical considerations. J. Mol. Biol. 183, 1–12.PubMedCrossRefGoogle Scholar
  52. Lockridge O. (1984) Amino acid composition and sequence of human serum Cholinesterase: A progress report, in Cholinesterase Fundamental and Applied Aspects (Brzin M., Barnard E. A., and Sket eds.) Walter de Gruyter, NY pp. 5–12.Google Scholar
  53. Lockridge O., Bartels C. G., Vaughan T. A., Wong C. K., Norton S. E., and Johnson L. L. (1987) Complete amino acid sequence of human serum Cholinesterase J. Biol Chem. 262, 549– 557.PubMedGoogle Scholar
  54. Lockridge O. and La Du B. N. (1986) Amino acid sequence of the active site of human serum Cholinesterase from usual, atypical and atypical-silent genotypes. Biochem. Genet. 24, 485–498.PubMedCrossRefGoogle Scholar
  55. Loomis T. A. (1963) Distribution and excretion of pyridine-2-aldoxime methiodide (PAM); atropine and PAM in sarin poisoning Toxicol. Appl. Pharamacol 5, 489–499.CrossRefGoogle Scholar
  56. Lovrien E. W., Magenis R. E., Rivas M. L., Lamvik N., Rowe S., Wood J., and Hemmerling J. (1978) Serum Cholinesterase E2 linkage analysis: Possible evidence for localization to chromosome 16. Cytogenet. Cell. Genet. 22, 324–326.PubMedCrossRefGoogle Scholar
  57. Ludgate, M., Swillens S., Mercken L., and Vassart G. (1986) Homology between thyroglobulin and acetylcholinesterase: An explanation for pathogenesis of ginnes opthamology? Lancet II, 219.CrossRefGoogle Scholar
  58. Maizei J. V. and Lenk R. R. (1981) Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc. Natl Acad. Sci. USA 78, 7665–7669.CrossRefGoogle Scholar
  59. Martin F. H., Castro M., Aboulela, Grave’s and Tinoco I., Jr. (1985) Base pairing involving de-oxyinosine: Implications for probe design. Nucl. Acids Res. 13, 8927– 8938.PubMedCrossRefGoogle Scholar
  60. Massoulie J. and Bon S. (1982) The molecular forms of Cholinesterase and acetylcholinesterase in vertebrates. Ann. Rev. Neurosci. 5, 57–106.PubMedCrossRefGoogle Scholar
  61. McPhee-Quigley K., Taylor P., and Taylor S. (1985) Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase: A comparison of NH2–terminal and active center sequences. J. Biol. Chem. 260, 12185–12189.Google Scholar
  62. Meflah K., Bernard S., and Massoulie J. (1984) Interactions with lectins indicate differences in the carbohydrate composition of the membrane-bound enzymes acetylcholinesterase and 5′-nucleotidase in different cell types. Biochimie 66, 59–69.PubMedCrossRefGoogle Scholar
  63. Melchior E. B. and Hippel H. V. (1972) Alteration of the relative stability of dA-dT and dG-dC base pairs in DNA. Proc. Natl. Acad. Sci USA 70, 298–302.CrossRefGoogle Scholar
  64. Mendel B., and Rudney H. (1943) Studies on Cholinesterase. A specific test for true pseudo-cholinesterase. Biochem. J. 37, 59–63.PubMedGoogle Scholar
  65. Merken L., Simons M. J., Swillens, S., Massaer M., and Vassart G. (1985) Primary structure of bovine thyroglobulin deduced from the sequence of its 8,431-base complementary DNA. Nature 316, 647–651.CrossRefGoogle Scholar
  66. Messing J. (1983) new M13 vectors for cloning, in Methods in Enzymology-Recombinant DNA Techniques vol. 101, part c, pp. 20–78.Google Scholar
  67. Mushina M., Kurosaki T., Tobimatsu T., Morimoto Y., Noda M., and Numa S., (1984) Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307, 604–608.CrossRefGoogle Scholar
  68. Noda M., Takahashi H., Tanabe T., Toyasato M., Kikyotani S., Furutani Y., Hirosi T., Tasashima H., Inayama S., Niyata T., and Numa S. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 69. 302, 528–531.Google Scholar
  69. Ord G. M. and Thompson R. H. S. (1952) Pseudocho-linesterase activity in the central nervous system. Biochem. J. 51, 245–251.PubMedGoogle Scholar
  70. Patel D. J., Kozlowski S. A., Marky L. A., Broka C., Dallas J., Itakura K., and Breslauer K. J. (1982) Structure, dynamics, and energetics of deoxygua-nosine-thymidine Wobble base pair formation in the self-compleme d(CGTGAATTCGCG) duplex in solution. Biochemistry 21, 437–444.PubMedCrossRefGoogle Scholar
  71. Prody C., Zevin-Sonkin D., Gnatt A., Koch R., Zisling R., Goldberg O., and Soreq H. (1987) Use of synthetic oligodeoxynucleotide probes for the isolation of a human Cholinesterase cDNA clone. J. Neurosci. Res. 16, 25–35.CrossRefGoogle Scholar
  72. Prody G, Gnatt A., Zevin-Sonkin D., Goldberg O., and Soreq H. (1987) Isolation and characterization of full length cDNA clones coding for Cholinesterase: from fetal human tissues Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  73. Queen G L. and Korn L. J. (1980) Computer Analysis of Nucleic Acids and Proteins Meth. Enz. Mole 65, 595–609.Google Scholar
  74. Razon N., Soreq H., Roth E., Bartal A., and Silman I. (1984) Characterization of levels and forms of cho-linesterases in human primary brain tumors. Exp. Neurol 84, 681–695.PubMedCrossRefGoogle Scholar
  75. Rosenberry T. L. and Scoggin D. M. (1984) Human erythrocyte acetylcholinesterase is an amphipathic protein whose short membrane-binding domain is removed by papain digestion. J. Biol. Chem. 250, 5643–5652.Google Scholar
  76. Rotundo R. L. (1984) Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc. Natl. Acad. Sci. USA 81, 479–483.PubMedCrossRefGoogle Scholar
  77. Sanger G., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5468.PubMedCrossRefGoogle Scholar
  78. Schumacher M., Camp S., Maulet Y., Newton M., MacPhee-Quigley K., Taylor S. S., Friedmann T., and Taylor P. (1986) Primary structure of Torpedo Californica acetylcholinesterase deduced from its cDNA sequence. Nature 319, 407–409.PubMedCrossRefGoogle Scholar
  79. Sikorav J. L., Frassi J., and Bon S. (1985) Synthesis in vitro of precursors of the catalytic subunits of acetylcholinesterase from Torpedo marmorata and Electrophorus electricus. Eur. J. Biochem. 145, 519–524.CrossRefGoogle Scholar
  80. Silman I., DiGiamberardino L.,Lyles J.,Couraud J.Y., and Barnard E., (1979) Parallel regulation of acetylcholinesterase and PseudoCholinesterase in normal, denervated, and dystrophic chicken skeletal muscle. Nature 28, 160–161.CrossRefGoogle Scholar
  81. Silver A. (1974) The Biology of Cholinesterases. North-Holland, Amsterdam.Google Scholar
  82. Simmers R. N., Stupans I., and Sutherland G. R. (1986) Localization of the human haptoglobin genes distal to the fragile site at 16922 using in situ hybridization Cytogenet. Cell Genet. 41, 838–41.CrossRefGoogle Scholar
  83. Simpson N. E. (1966) Factors influencing Cholinesterase activity in a Brazilian population Am. J. Hum. Gen. 18, 29–35.Google Scholar
  84. Soreq H., Dzjiegielewskla K. M., Zevin-Sonkin D., and Zakut H. (1986) The use of mRNA translation in vitro and in ovo followed by crossed immuno-electrophoretic antoradiography to study the biosynthesis of human cholinesterases. Cell Molec. Neurobiol. 6, 227–237.PubMedCrossRefGoogle Scholar
  85. Soreq H., Zamir R., Zevin-sonkin D., and Zakut H. (1987) Human Cholinesterase genes localized by hybridization to chromosomes 3 and 16, submitted.Google Scholar
  86. Soreq H., Zevin-Sonkin D., and Razon N. (1984) Expression of Cholinesterase gene(s) in human brain tissues: Translational evidence for multiple mRNA species. EMBO J. 3, 1371–1375.PubMedGoogle Scholar
  87. Sparkes R. S., Field L. L., Sparkes M. C., Crist M., Spence M. A., James K., and Garry P. J. (1984) Genetic linkage studies of transferrin, pseudocho-linesterase, and chromosome 1 loci. Hum. Hered. 34, 96–100.PubMedCrossRefGoogle Scholar
  88. Sumikawa K., Houghton M., Smith J. C., Bell L., Richards B. M., and Barnard E. A. (1982) The Molecular cloning and characterization of cDNA coding for the a-subunit of the acetylcholine receptor. Nucl Acids Res. 10, 5809–5818.PubMedCrossRefGoogle Scholar
  89. Swillens S., Ludgate M., Mercken L., Dumont J. E., and Vassart G. (1986) analysis of sequence and structure homologies between thyroglobulin and acetylchoinesterase: Possible functional and clinical significance. Biochem. Biophys. Res. Commun. 137, 142–148.PubMedCrossRefGoogle Scholar
  90. Szeinberg A., Pipano S., Assa M., Medalie J. H., and Neufeld H. N. (1972) High frequency of atypical pseudoCholinesterase gene among Iraqi and Iranian Jews. Clin. Genet. 3, 123–127.PubMedCrossRefGoogle Scholar
  91. Takahashi Y., Kato K., Hayashizaki Y., Wakabayashi T., Ohtsuka E., Matsuki S., Ikehara M., and Matsubara K. (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc. Natl. Acad. Sci. USA 82, 1931–1935.PubMedCrossRefGoogle Scholar
  92. Thompson J. C. and Whittaker M. (1966) A study of the pseudoCholinesterase in 78 cases of apnea following suxamethonium. Acta Genet. 16, 206–215.Google Scholar
  93. Toutant J. P., Massoulie J., and Bons. (1985) Polymorphism of pseudoCholinesterase in Torpedo marmorata tissues: Comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase. J. Neurochem. 44, 580–592.PubMedCrossRefGoogle Scholar
  94. Vigny M., Gisiger V., and Massoulie J. (1978) “Nonspecific” Cholinesterase and acetylcholinesterase in rat tissues: Molecular forms, structural, and catalytic properties and significance of the two enzyme systems. Proc. Natl Acad. Sci. USA 75, 2588–2592.PubMedCrossRefGoogle Scholar
  95. Wallace R. B., Johnson M. J., Hirose T., Miyake T., Kawashima E. H., and Itakura K. (1981) The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit beta-globin DNA. Nucl Acids. Res. 9, 879–894.CrossRefGoogle Scholar
  96. Whittaker M. (1980) Plasma Cholinesterase and the anaesthetist. Anaesthesia 35, 174–197.PubMedCrossRefGoogle Scholar
  97. Wood W. I., Gitschier J., Laskey L. A., and Lawn R. M. (1985) Base composition-independent hybridization in tetramethylammonium chloride: A method for oligonucleotide screening of highly complex gene libraries. Proc. Natl Acad. Sci. USA 82, 1585–1588.PubMedCrossRefGoogle Scholar
  98. Yates C. M., Simpson J., Maloney A. F. J., Gordon A., and Reid A. H. (1980) Alzheimer-like cholinergic deficiency in Down’s syndrome. Lancet 2, 979–980.PubMedCrossRefGoogle Scholar
  99. Zagursky R. J., Bumeister K., Lomax N., and Berman M. L. (1985) Rapid and easy sequencing of large linear double-stranded DNA and supercoiled plasmid DNA. Gene Anal Techn. 2, 89–94.CrossRefGoogle Scholar
  100. Zakut H., Matzkel A., Schejter E., Avni A., and Soreq H. (1985) Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain. J. Neurochem. 45, 382–389.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Hermona Soreq
    • 1
  • Averell Gnatt
    • 1
  1. 1.Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew UniversityIsrael

Personalised recommendations