Skip to main content

A Molecular View of Vertebrate Retinal Development

  • Chapter
  • 78 Accesses

Part of the book series: Molecular Neurobiology ((MN))

Abstract

Immunological probes have begun to identify molecules that delineate cell layers and cell types during the formation of the retina and other parts of the optic cup. Within the developing retina, cell-type-specific monoclonal antibodies have been used to show that differentiation occurs before cells reach their final laminar position. Cell surface molecules have been found expressed in position-dependent gradients across the retina. These molecules may convey positional information to the retinal cells and their topographic connections. One such molecule is a modified carbohydrate group on a ganglioside, suggesting that such groups may play a role in neural development. A variety of molecules that are expressed by rod photoreceptors at defined stages of their differentiation have been characterized. These molecules have been used to show the development of subcellular compartments withinrods. In vitro studies have suggested that photoreceptor molecules expressed at different times are under different forms of regulation. Some of these cell-specific molecules have been shown to be under transcriptional control and thus defined cell interactions seem to be linked to changes in gene expression during retinal development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney E. R., Williams B. P., and Raff M. C. (1983) Tracing the development of oligodendrocytes from precursor cells using monoclonal antibodies, fluorescence-activated cell sorting, and cell culture. Dev. Biol 100, 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Akagawa K. and Barnstable C.J. (1986) Identification and characterisation of cell types in monolayer cultures of rat retina using monoclonal antibodies. Brain Res. 383, 110–120.

    Article  PubMed  CAS  Google Scholar 

  • Akagawa K. and Barnstable C. J. (1987) Identification and characterisation of cell types accumulating GABA in rat retinal cultures using cell type specific monoclonal antibodies. Brain Res. 408, 156–162.

    Article  Google Scholar 

  • Baird A., Esch F., Gospodarowicz D., and Guillemin R. (1985) Retina and eye derived endothelial cell growth factors: Partial molecular characterization and identity with acidic and basic fibroblast growth factors. Biochemistry 24, 7855 – 7860.

    Article  PubMed  CAS  Google Scholar 

  • Barbera A. J., Marchase R. B., and Roth S. (1973) Adhesive recognition and retinotectal specificity. Proc. Nat Acad. Sci. USA 70, 2482–2486.

    Article  PubMed  CAS  Google Scholar 

  • Barde Y. A., Edgar D., and Thoenen H. (1982) Purification of new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553.

    PubMed  CAS  Google Scholar 

  • Barnstable C. J. (1980) Monoclonal antibodies which recognise different cell types in the rat retina. Nature 286, 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Barnstable C. J. (1981) Developmental studies of rat retina cells using cell-type-specific monoclonal antibodies, in Monoclonal Antibodies to Neural Antigens. (McKay R., Raff M. C, and Reichardt L. F., eds.) pp. 219–230, Cold Spring Harbor, NY.

    Google Scholar 

  • Barnstable C. J. (1982) Immunological studies of the retina, in Neuroimmunology (Brockes J., ed.) pp. 183–214, Plenum, New York, NY.

    Google Scholar 

  • Barnstable C. J. (1985) Monoclonal antibodies as molecular probes of the nervous system, in Hybridoma Technology in the Biosciences and Medicine (Springer T., ed.) pp. 269–289, Plenum, New York, NY.

    Google Scholar 

  • Barnstable C. J. and Constantine-Paton M. (1984) Initial events of lamination in the mammalian retina. Soc. Neurosci. Abstr. 10, 787.

    Google Scholar 

  • Barnstable C. J. and Dräger U. C. (1984) Thy-1: A ganglion cell specific marker of rodent retina. Neuroscience 11, 847–855.

    Article  PubMed  CAS  Google Scholar 

  • Barnstable C. J., Akagawa K., Hofstein R., and Horn J. P. (1983) Monoclonal antibodies that label discrete cell types in the mammalian nervous system. Cold Spring Harbor Symp. Quant. Biol. 48, 863–876.

    PubMed  Google Scholar 

  • Barnstable C. J., Hofstein R., and Akagawa K. (1985) A marker of early amacrine cell development in rat retina. Dev. Brain Res. 20, 286–290.

    Article  CAS  Google Scholar 

  • Bastiani M. J., Du Lac S., and Goodman C. S. (1985) The first neuronal growth cones in insect embryos. Model system for studying the development of neuronal specificity, in Model Neural Networks and Behavior (Selverston A. I., ed.) pp. 149–174. Plenum, New York, NY.

    Google Scholar 

  • Ben-Shaul Y., Hausman R. E., and Moscona A. A. (1979) Visualization of a cell surface glycoprotein, the retina cognin on embryonic cells by immunolatex labeling and scanning electron microscopy. Dev. Biol. 72, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shaul Y., Hausman R.E., and Moscona A. A. (1980) Age-dependent differences in cognin regeneration on embryonic retina cells: Immunolabcling and SEM studies. Dev. Neurosci. 3, 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Bentley D. and Caudy M. (1983a) Pioneer axons lose directed growth after selective killing of guidepost cells. Nature 304, 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Bentley D. and Caudy M. (1983b) Navigational substrates for peripheral pioneer growth cones: Limb-axis polarity cues, limb-segment boundaries, and guidepost neurons. Cold Spring Harbor Symp. Quant. Biol. 48, 573–585.

    PubMed  Google Scholar 

  • Besharse J.C, Forestner D.M., and Defoe D.M.(1985) Membrane assembley in retinal photoreceptors. III. Distinct membrane domains of the connecting cilium of developing rods. J. Neurosci. 5, 1035–1048.

    PubMed  CAS  Google Scholar 

  • Blum A. S. and Barnstable C. J. (1986) Structure and regulation of a developmentally restricted neuronal surface antigen. J. Cell Biol. 103, 231a.

    Article  Google Scholar 

  • Bonhoeffer F. Huf J. (1985) Position-dependent properties of retinal axons and their growth cones. Nature 315, 409–410.

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury R., Thiery J.-P., Rutishauser U., and Edelman G. M. (1977) Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J. Biol Chem. 252, 6835–6840.

    PubMed  CAS  Google Scholar 

  • Brady R.C and Hilfer S.R. (1982) Optic cup formation: A calcium regulated process. Proc. Nat. Acad. Sci. USA 79, 5587–5591.

    Article  PubMed  CAS  Google Scholar 

  • Braekvelt C.R. and Hollenberg M.J. (1970) The development of the retina of the albino rat. Am. J. Anat. 127, 281–302.

    Article  Google Scholar 

  • Brugge J. S., Cotton P. C, Queral A. E., Barrett J. N., Nonner D., and Keane R. W. (1985) Neurones express high levels of a structurally modified activated form of pp60c-src. Nature 316, 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Buskirk D. R., Thiery J.-P., Rutishauser U., and Edelman G. M. (1980) Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retinae. Nature 285, 488–489.

    Article  PubMed  CAS  Google Scholar 

  • Cheresh D. A., Reisfeld R. A., and Varki A. P. (1984) O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science 225, 844–846.

    Article  PubMed  CAS  Google Scholar 

  • Cheresh D. A., Pierschbacher M. D., Herzig M. A., and Mujoo K. (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J. Cell Biol. 102, 688–696.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton M., Blum A. S., Mendez-Otero R., and Barnstable C. J. (1986) A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature 324, 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Cotton P. G and Brugge J. S. (1983) Neural tissues express high levels of the cellular sre gene product pp60c-src. Mol. Cell. Biol. 3, 1157–1162.

    PubMed  CAS  Google Scholar 

  • Daniloff J.K., Chuong G-M., Levi G., and Edelman G. M. (1986) Differential distribution of cell adhesion molecules during histogenesis of the chick nervous system. J.Neurosci. 6, 739 – 758.

    PubMed  CAS  Google Scholar 

  • David S., Miller R. K, Patel R., and Raff M. G (1984) Effects of neonatal transection on glial cell development in the rat optic nerve: Evidence that the oligodendrocyte-type 2 astrocyte lineage depends on axons for its survival. J.Neurocytol. 13, 961–974.

    Article  PubMed  CAS  Google Scholar 

  • De Camilli P., Ueda T., E., Bloom F. E., Battenberg E., and Greengard P. (1979) Widespread distribution of protein I in the central and peripheral nervous systems. Proc. Nat Acad. Sci. USA 76, 5977–5981.

    Article  PubMed  Google Scholar 

  • Denham S. (1967) A cell proliferation study of the neural retina in the two day rat. J. Embryol. Exp. Morphol. 18, 53–66.

    PubMed  CAS  Google Scholar 

  • Devoto S. and Barnstable G J. (1987) SVP38: A synaptic vesicle protein whose appearance correlates closely with synaptogenesis in the rat nervous system Ann. NY Acad. Sci. (in press).

    Google Scholar 

  • Dodd J., Solter D., and Jessell T.M. (1984) Monoclonal antibodies against carbohydrate differentiation antigens identify subsets of primary sensory neurons. Nature 311, 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Dowling J. E. (1964) Nutritional and inherited blindness in the rat. Exp. Eye Res. 3, 348–356.

    Article  PubMed  CAS  Google Scholar 

  • Dräger U. G, Edwards D. L., and Barnstable G J. (1984) Antibodies against filamentous components in discrete cell types of the mouse retina. J. Neurosci. 4, 2025–2042.

    PubMed  Google Scholar 

  • Drenckhahn D. and Wagner H. -J. (1985) Relation of retinomotor responses and contractile proteins in vertebrate retinas. Eur. J. Cell. Biol. 37, 156–168.

    PubMed  CAS  Google Scholar 

  • Edelman G. M., Hoffman S., Chuong C.-M., Thiery J. -P., Brackenbury R., Gallin W. J., Grumet M., Greenberg M. E., Hemperly J. J., Cohen G, and Cunningham B. A. (1983) Structure and modulation of neural cell adhesion molecules in early and late embryogenesis. Cold Spring Harbor Symp. Quant. Biol 48, 515–526.

    PubMed  CAS  Google Scholar 

  • Edwards J. G., Campbell J. A., Robson R. T., and Vicker M. G. (1975) Trypsinized BHK 21 cells aggregate in the presence of divalent cations. J. Cell Sci. 19, 653–667.

    PubMed  CAS  Google Scholar 

  • Fekete D. M. and Barnstable G J. (1983) The subcellular localisation of rat photoreceptor specific antigens. J. Neurocytol. 12, 785–803.

    Article  PubMed  CAS  Google Scholar 

  • Fujita S. (1962) Kinetica of cellular proliferation. Exp. Cell Res. 28, 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Fulcrand J. and Privat A. (1977) Neuroglial reactions secondary to Wallerian degeneration in the optic nerve of the postnatal rat: Ultrastructural and quantitative study. J. Comp. Neurol. 176, 189–224.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez F., Landers R. A., Glazebrook P. A., Fong S. -L., Liou G. I., Lam D. M. K., and Bridges C. D. B. (1984a) An extracellular retinolbinding glycoprotein in the eyes of mutant rats with retinal dystrophy: Development, localization, and biosynthesis. J. Cell Biol. 99, 2092–2098.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez F., Landers R. A., Fong S.-L., Liou F. L, and Bridges C. D. B. (1984b) Interstitial retinal retinol-binding protein in the interphotoreceptor matrix of normal and dystrophic rats, in The Inter Photoreceptor in Matrix in Health tordeceptor in Matrix in Health and disease (Bridges C. D. and Adler A. J., eds.) pp 213–229. Alan R. Liss, New York, NY.

    Google Scholar 

  • Goridis C., Hirn M., Santoni M.-J., Genarini G., Deagostini-Bazin H., Jordan B. R., Kiefer M, and Steinmetz M. (1985) Isolation of mouse N-CAM-related cDNA: Detection and cloning using monoclonal antibodies. EMBO J. 4, 631–635.

    PubMed  CAS  Google Scholar 

  • Grumet M., Hoffman S. and Edelman G. M. (1984) Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc. Nat. Acad. Sci. USA 81, 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Grunewald G. B., Pratt R. S., and Lilien J. (1982) Enzymatic dissection of embryonic cell adhesive mechanisms. III. Immunological identification of a component of the calcium-dependent adhesive system of embryonic chick neural retina cells. J. Cell Sci. 55, 69–83.

    Google Scholar 

  • Halfter W., Deiss S., and Schwarz U. (1985) The formation of the axonal pattern in the embryonic avian retina. J. Comp. Neurol. 232, 466–480.

    Article  PubMed  CAS  Google Scholar 

  • Hatta K. and Takeichi M. (1986) Expression of N-adherin adhesion molecules associated with early morphogenetic events in chicken development. Nature 320, 447–449.

    Article  PubMed  CAS  Google Scholar 

  • Hatta K., Okada T. S., and Takeichi M. (1985) A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: Possible role of its target antigen in animal pattern formation. Proc. Nat. Acad. Sci. USA 82, 2789–2793.

    Article  PubMed  CAS  Google Scholar 

  • He H. T., Barbet J., Chaix J. C, and Goridis C. (1986) Phosphatidylinositol is involved in the membrane attachment of N-CAM-120, the smallest component of the cell adhesion molecule. EMBO J. 5, 2489–2494.

    PubMed  CAS  Google Scholar 

  • Hicks D. and Barnstable C. J. (1986) Lectin and antibody labelling of developing rat photoreceptor cells: An electron microscope immunocytochemical study. J. Neurocytol. 15, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Hicks D. and Barnstable C. T. (1987) Different monoclonal antibodies reveal different binding patterns on developing and adult retina. J. Histochem. Cytochem (In Press).

    Google Scholar 

  • Hilfer S. R., Brady R. C., and Wang J-J. W. (1981) Intracellular and extracellular changes during early ocular development in the chick embryo, in Ocular Size and Shape: Regulation During Development (Hilfer S. R. and Sheffield J. B., eds.) pp. 47–78, Springer-Verlag, New York, NY.

    Google Scholar 

  • Hinds J. W. and Hinds P. L. (1978) Early development of amacrine cells in the mouse retina: An electron microscope, serial section analysis. J. Comp. Neurol 179, 277–300.

    Article  PubMed  CAS  Google Scholar 

  • Hockfield S., McKay R. D., Hendry S. H. C., and Jones E. G. (1983) A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus. Cold Spring Harbor Symp. Quant. Biol. 48, 877 – 890.

    PubMed  Google Scholar 

  • Hoffman S. and Edelman G. M. (1983) Kinetics of homophilic binding by E and A forms of the neural cell adhesion molecule. Proc. Nat. Acad. Sci. USA 80, 5762–5766.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman S., Friedlander D. R., Chuong C.-M., Grumet M., and Edelman G. M. (1986) Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions. J. Cell Biol. 103, 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Holt G (1980) Cell Movements in Xenopus development. Nature 287, 850–852.

    Article  PubMed  CAS  Google Scholar 

  • Horvitz H.R., Sternberg P.W., Greenwald I. S., Fixsen W., and Ellis H. M. (1983) Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. 48, 453–463.

    PubMed  Google Scholar 

  • Jessell T. M. and Dodd J. (1985) Structure and expression of differentiation antigens on functional subclasses of primary sensory neurons. Phil. Trans. R. Soc.(Lond) B308, 271–281.

    Google Scholar 

  • Johnson J. E., Barde Y.-A., Schwab M., and Thoenen H. (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J. Neurosci. 6, 3031–3038.

    PubMed  CAS  Google Scholar 

  • Johnston M. G, Nodoen M. D., Hazelton R. D., Coulombre J. L., and Coulombre A. J. (1979) Origins of avian ocular and periocular tissues. Exp. Eye Res. 29, 27–43.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink B. H. J. and Federoff S. (1980) Differentiation capabilities of mouse optic stalk in isolation of its immediate in vivo environment. Deo. Biol. 78, 215–221.

    Article  CAS  Google Scholar 

  • Kapfhammer J. P., Grunewald B. E., and Raper J. A. (1986) The selective inhibition of growth cone extension by specific neurites in culture. J. Neurosci. 6, 2527–2534.

    PubMed  CAS  Google Scholar 

  • Keane R. W., Lipsich L. A., and Brugge J. S. (1984) Differentiation and transformation of neural plate cells. Dev. Biol. 103, 38–52.

    Article  PubMed  CAS  Google Scholar 

  • Krotoski D. M., Domingo C, and Bronner-Fraser M. (1986) Distribution of a putative cell surface receptor for fibronectin and laminin in the avian embryo. J. Cell Biol. 103, 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  • Levitt P. (1984) A monoclonal antibody to limbic system neurons. Science 223, 299–301.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R. M., Thoenen H., and Barde Y. A. (1985) Placode and neural crest derived sensory neurons are responsive at early developmental stages to brain-derived neurotrophic factor. Dev. Biol. 112, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Magnani J. L., Thomas W. A., and Steinberg M. S. (1981) Two distinct adhesion mechanisms in embryonic neural retina cells. I. A kinetic analysis. Deu. Biol. 81, 96–105.

    Article  CAS  Google Scholar 

  • Marchase R. B. (1977) Biochemical investigations of retinotectal adhesive specificity. J. Cell Biol. 75, 237–257.

    Article  PubMed  CAS  Google Scholar 

  • Marchase R. B., Harges P., and Jakoi E. R. (1981) Ligatin from embryonic chick neural retina inhibits retinal cell adhesion. Deu. Biol. 86, 250–255.

    Article  CAS  Google Scholar 

  • Marchase R. B., Koro L. A., Kelly C. M., and McClay D. R. (1982) Retinal ligatin recognizes glycoproteins bearing oligosaccharides terminating in phosphodiester linked glucose. Cell 28, 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Molday R. S. and Mac Kenzie D. (1983) Monoclonal antibodies to rhodopsin: Characterization, crossreactivity and application as structural probes. Biochemistry 22, 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Morrison R. S., Sharma A., De Vellis J., and Bradshaw R. A. (1986) Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc. Nat. Acad. Sci. USA 83, 7537–7541.

    Article  PubMed  CAS  Google Scholar 

  • Morse D. E. and McCann P. S. (1984) Neuroectoderm of the early embryonic rat eye. Scanning electron microscopy. Invest. Ophthalmol Vis. Sci. 25, 899–907.

    PubMed  CAS  Google Scholar 

  • Moscona A. A. and Housman R. E. (1977) Biological and biochemical studies on embryonic cell-cell recognition, in Celland Tissues Interactions (Lash J. W. and Burger M. M., eds.) pp. 173–185. Raven, New York, NY.

    Google Scholar 

  • Murray B. A., Hemperly J. J., Gallin W. J., MacGregor J. S., Edelman G. M., and Cunningham B. A. (1984) Isolation of cDNA clones for the chick neural cell adhesion molecule (N-CAM). Proc. Nat. Acad. Sci: USA 81, 5584–5588.

    Article  CAS  Google Scholar 

  • Murray B. A., Hemperly J. J., Prediger E. A., Edelman G. M., and Cunningham B. A. (1986) Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM). J. Cell Biol. 102, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Ophir I., Moscona A. A., and Ben-Shaul Y. (1983) Localization of retina cognin in embryonic neural retina tissue by immuno-scanning electron microscopy. Cell Differ. 13, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Papermaster D. S., Schneider B. G., and Besharse J. (1985) Vesicular transport of newly synthesized opsin from the golgi apparatus toward the rod outer segment. Invest. Ophthalmol. Vis. Sci. 26, 1386–1404.

    PubMed  CAS  Google Scholar 

  • Pollerberg G. E., Schachner M., and Davoust J. (1986) Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature 324, 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C, Miller R. H., and Noble M. (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C, Williams B., and Miller R. H. (1984) The in vitro differentiation of a bipotential glial progenitor cell. EMBO J. 3, 1857–1864.

    PubMed  CAS  Google Scholar 

  • Rakic P. (1981) Developmental events leading to laminar and areal organization of the neocortex, in The Organization of the Cerebral Cortex (Schmitt F. O., Worden F. G., Adelman G., and Dennis S. G., eds.) pp. 7–28. MIT, Cambridge, MA.

    Google Scholar 

  • Raper J. A. and Kapfhammer J. P. (1986) The tissue specificity of contact mediated avoidance between growth cones and axons. Soc. Neurosci. Abstr. 12, 1335.

    Google Scholar 

  • Regan L. J., Dodd J., Barondes S. H., and Jessell T. M. (1986) Selective expression of endogenous lactosebinding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons. Proc. Nat. Acad. Sci. USA 83, 2248–2252.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser U. (1983) Molecular and Biological properties of a neural cell adhesion molecule. Cold Spring Harbor Symp. Quant. Biol. 48, 501–514.

    PubMed  CAS  Google Scholar 

  • Salton S. R. J., Richter-Landsberg C, Greene L. A., and Shelanski M. L. (1983) Nerve growth factor inducible large external (NILE) glycoprotein: Studies of a central and peripheral neuronal marker. J. Neurosci. 3, 441–454.

    PubMed  CAS  Google Scholar 

  • Schachner M., Faissner A., Kruse J., Lindner J., Meier D. H., Rathjen F. G., and Wernecke H. (1983) Celltype specificity and developmental expression of neural cell-surface components involved in cell interactions and of structurally related molecules. Cold Spring Harbor Symp. Quant Biol. 48, 557–568.

    PubMed  CAS  Google Scholar 

  • Schauer R. (1971) Hydroxylation and O-acetylation of N-acetylneuraminic acid bound to glycoproteins of isolated subcellular membranes from porcine and bovine submaxillary glands. Hoppe-Seller’s Z. Physiol Chem. 352, 1282–1290.

    Article  CAS  Google Scholar 

  • Schlosshauer B., Schwartz U., and Rutishauser U. (1984) Topological distribution of different forms of neural cell adhesion molecule in the developing chick visual system. Nature 310, 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Sidman R. L. (1961) Histogenesis of mouse retina studied with thymidine-H3, in Structure of the Eye (Smelser G. K., ed.) pp. 487–506. Academic, London, UK.

    Google Scholar 

  • Skoff R. P., Price D. L., and Stocks A. (1976) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation. J. Comp. Neurol. 169, 291–312.

    Article  PubMed  CAS  Google Scholar 

  • Sorge L. K., Levy B. T., and Maness P. F. (1984) pp60c-src is developmentally regulated in the neural retina. Cell 36, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Sparrow J. R. and Barnstable C. J. (1986) Expression of cell and synapse specific antigens in rat retinal expiant culture. Soc. Neurosci. Abstr. 12, 643.

    Google Scholar 

  • Steinberg M. S. (1964) The problem of adhesive selectivity in cellular interactions, in Cellular Membranes in Development (Locke M. ed.) pp. 321–366. Academic, New York, NY.

    Google Scholar 

  • Steinberg M. S. and Granger R. E. (1966) The re-acquisition of adhesiveness by trypsinized chick embryonic cells in vitro. Am. Zool. 6, 337a.

    Google Scholar 

  • Steinberg R. H., Fisher S. K., and Anderson D. H. (1980) Disc morphogenesis in vertebrate photoreceptors. J. Comp. Neurol. 190, 501–518.

    Article  PubMed  CAS  Google Scholar 

  • Stroeva O. G. (1960) Experimental analysis of the eye morphogenesis in mammals. J. Embryol. Exp. Morphol. 8, 349–368.

    Google Scholar 

  • Stryer L. (1985) Molecular design of an amplification cascade in vision. Biopolymers 24, 29–47.

    Article  PubMed  CAS  Google Scholar 

  • Sulston J. E. (1983) Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harbor symp. Quant. Biol. 48, 443–452.

    PubMed  Google Scholar 

  • Takeichi M. (1977) Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 75, 464–474.

    Article  PubMed  CAS  Google Scholar 

  • Takeichi M., Ozaki H. S., Tokumaga K., and Okada T. S. (1979) Experimantal manipulation of cell surface to affect cellular recognition mechanisms. Deo. Biol. 70, 195–205.

    Article  CAS  Google Scholar 

  • Tauchi M. and Masland R. H. (1984) The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B 223, 101–119.

    Article  PubMed  CAS  Google Scholar 

  • Temple S. and Raff M. C. (1985) Differentiation of a bipotential glial progenitor cell in single cell microculture. Nature 313, 223–225.

    Article  PubMed  CAS  Google Scholar 

  • Thomas J. B., Bastiani M. J., Bate C. M., and Goodman C. S. (1984) From grasshopper to Drosophila: A common plan for neruonal development. Nature 310, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Thomson L. K., Horowitz P. M., Bentley K. L., Thomas D. D., Alderete J. F., and Klebe R. J. (1986) Localization of the ganglioside-binding site of fibronectin. J. Biol. Chem. 261, 5209–5214.

    Google Scholar 

  • Treisman J. E., Morabito M., and Barnstable C. J. (1987) Developmental expression of opsin, a pho-toreceptor-specific gene. Proc. Miami Winter Symp. (in press).

    Google Scholar 

  • Trisler D., Bekenstein J., and Daniels M. P. (1986) Antibody to a molecular marker of cell position inhibits synapse formation in retina. Proc. Nat. Acad. Sci. USA 83, 4194 – 4198.

    Article  PubMed  CAS  Google Scholar 

  • Trisler G. D., Schneider M. D., and Nirenberg M. (1981a) A topographic gradient of molecules in retina can be used to identify neuron position. Proc. Nat. Acad. Sci. USA 78, 2145–2149.

    Article  PubMed  CAS  Google Scholar 

  • Trisler G. D., Schneider M. D., Moskal J. R., and Nirenberg M. (1981b) A gradient of molecules in avian retina with dorsoventral polarity, in Monoclonal Antibodies to Neural Antigens (McKay R., Raff M. C, and Reichardt L. F., eds.) pp. 231–245. Cold-Spring Harbor, New York.

    Google Scholar 

  • Troccoli N. M. and Housman R. E. (1985) Vesicle interactions as a model for the retinal cell-cell recognition mediated by R-cognin. Cell Differ. 16, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Van Veen T., Katial A., Shinohara T., Barrett D. J., Wiggert B., Chader G. J., and Nickerson J. M. (1986) Retinal photoreceptor neurons and pinealocyutes accumulate mRNA for interphotoreceptor retinoid binding protein (IRBP). FEBS Lett. 208, 133–137.

    Article  PubMed  Google Scholar 

  • Vardimon L., Fox L. E., and Moscona A. A. (1986) Accumulation of c-src mRNA is developmentally regulated in embryonic neural retina. Mol Cell. Biol. 6, 4109–4111.

    PubMed  CAS  Google Scholar 

  • Vaughan D. K. and Fisher S. K. (1985) Distribution of F-actin in retinal cells. Invest. Ophthalmol Vis. Sci. 26 (suppl.), 248.

    Google Scholar 

  • Vollmer G. and Layer P. G. (1986) An in vitro model of proliferation and differentiation of the chick retina: Coaggregtes of retinal and pigment epithelial cells. J. Neurosci. 6, 1885–1896.

    PubMed  CAS  Google Scholar 

  • Wagner J. A. and D’Amore P. A. (1986) Neurite outgrowth induced by an endothelial cell mitogen isolated from retina. J. Cell biol. 103, 1363–1367.

    Article  PubMed  CAS  Google Scholar 

  • Walicke P., Cowan W. M., Ueno N., Baird A., and Guillemin R. (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc. Nat. acad. Sci. USA 83, 3012–3016.

    Article  PubMed  CAS  Google Scholar 

  • Wang J. W. and Hilfer S. R. (1982) The effect of inhibitors of glycoconjugate synthesis on optic cup formation in the chick embryo. Dev. Biol. 92, 41–53.

    Article  Google Scholar 

  • Wässle H. and Riemann H. J. (1978) The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200, 441–461.

    Article  PubMed  Google Scholar 

  • Weidman T. A. and Kuwabara T. (1968) Postnatal development of the rat retina. An electron microscopic study. Arch. Ophthalmol. 79, 470–484.

    PubMed  CAS  Google Scholar 

  • Yoshida M., Kawai S., and Toyoshima K. (1980) Uninfected avian cells contain structurally unrelated progenitors of viral sarcoma genes. Nature 287, 653–654.

    Article  PubMed  CAS  Google Scholar 

  • Young R. W. (1985) Cell differentiation in the retina of the mouse. Anat. Rec. 21, 199–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Barnstable, C.J. (1988). A Molecular View of Vertebrate Retinal Development. In: Bazan, N.G., U’Prichard, D. (eds) Molecular Neurobiology. Molecular Neurobiology. Humana Press. https://doi.org/10.1007/978-1-4612-4604-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4604-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8946-3

  • Online ISBN: 978-1-4612-4604-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics