Skip to main content

High Affinity Binding of p-Tyramine: A Process in Search of a Function

  • Chapter
Trace Amines

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Abstract

The presence of trace amines in the CNS of different animal species, their interactions with monoaminergic pathways, and their intrinsic pharmacological activities have justified recent efforts to ascertain whether they may play a neurotransmitter role. The interaction with specific binding sites is a major requisite for a neurotransmitter, though “binding site” does not mean “receptor”, i.e. a physiologically-relevant entity (Laduron, 1984). Additionally, the candidate transmitter must be taken up in the synapse with an energy-dependent process, and must also be released from storage organelles. Para-tyramine (pTA) is actively taken up by nerve tissue preparations such as brain slices (Dyck, 1978), synaptosomes (Ungar et al., 1977) and synaptic vesicles (Lentzen and Philippu, 1977), from where it also under goes both spontaneous and stimulus-evoked release (Lentzen and Philippu, 1977; Dyck, 1984). Furthermore, pTA displays electrophysiologic (Jones, 1984), behavioral (Stoof et al., 1976) and neuroendocrine (Becù-Villalobos et al., 1985) activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashford CL., Casey R., Radda, G K. and Ritchie G.A. (1976) Energy-coupling in adrenal chromaffin granules. Neuroscience 1, 399–412.

    CAS  Google Scholar 

  • Becù-Villalobos D., Lacau De Mengido I.M. and Libertùn C. (1985) p-Tyramine, a natural amine, inhibits prolactin release in vivo. Endocrinology 116, 2044–2048.

    Article  PubMed  Google Scholar 

  • Bonnet J.J., Protais P., Chhagraoui A. and Costentin J. (1986) High-affinity of 3H-CBR 12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. Eur.J.Pharmacol. 126, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Brown N.L., Sirugue O. and Worcel M. (1986) The effects of some slow channel blocking drugs on high affinity serotonin uptake by rat brain synaptosomes. Eur.J.Pharma col. 123, 161–165.

    Article  CAS  Google Scholar 

  • Burt D.R., Creese I. and Snyder S.H. (1976) Properties of 3H-haloperidol and 3H-dopamine binding associated with dopamine receptors in calf brain membranes. Molec.Phar macol. 12, 800–812.

    CAS  Google Scholar 

  • Davis A., Madras B.K. and Seeman P. (1982) Solubilized re ceptors for 3H-dopamine (D3 binding sites) from canine brain. Biochem.Pharmacol. 31, 1183–1187.

    Article  PubMed  CAS  Google Scholar 

  • Deupree J.D. and Weaver J.P. (1984) Identification and characterization of the catecholamine transporter in bovine chromaffin granules using 3H-reserpine. J.Biol.Chem. 259, 10907–10912.

    PubMed  CAS  Google Scholar 

  • Dubocovich M.L. and Zahniser N.R. (1985) Binding characte ristics of the dopamine uptake inhibitor 3H-nomifensine to striatal membranes. Biochem.Pharmacol. 34, 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  • Dyck L.E. (1978) Uptake and release of meta-tyramine, para-tyramine and dopamine in rat striatal slices. Neurochem. Res. 3, 775–791.

    Article  PubMed  CAS  Google Scholar 

  • Dyck L.E. (1984) Neuronal transport of trace amines: an over view. In, Neurobiology of the Trace Amines (Boulton, A.A., Baker, G.B., Dewhurst, A.C., and Sandler, M., eds) pp 185–204, Humana Press, N.J.

    Google Scholar 

  • Hall M.D., Jenner P., Kelly E. and Marsden CD. (1983) Differential anatomical location of 3H-N, n-propylnorapomor phine and 3H-spiperone binding sites in the striatum and substantia nigra of the rat. Br.J.Pharmacol. 79, 599–610.

    PubMed  CAS  Google Scholar 

  • Javitch J.A., Blaustein R.O. and Snyder S.H. (1983) 3H-Mazindol binding associated with neuronal dopamine up take sites in corpus striatum membranes. Eur.J.Pharmacol. 90, 461–462.

    Article  PubMed  CAS  Google Scholar 

  • Jones R.S.G. (1984) Electrophysiological studies on the possible role of trace amines in synaptic function. In, Neurobiology of the Trace Amines (Boulton, A.A., Baker, G.B., Dewhurst, A.C, and Sandler, M., eds) pp 205–223, Humana Press, N.J.

    Google Scholar 

  • Juorio A.V. (1982) A possible role for tyramines in brain function and some mental disorders. Gen.Pharmacol. 13, 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy L.T. and Hanbauer I. (1983) Sodium-sensitive cocaine binding to rat striatal membranes: possible relationship to dopamine uptake sites. J.Neurochem. 41, 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Kilkpatrick G.I., Jenner P. and Marsden C.D. (1985) Properties of rat striatal D-2 dopamine receptors solubilized with the zwitterionic detergent CHAPS. J.Pharm.Pharmacol. 37, 320–328.

    Article  Google Scholar 

  • La Bella F.S. (1985) Neurotransmitter uptake and receptor-ligand internalization- are they two distinct processes? Trends Pharmacol.Sci. 6, 319–322.

    Article  Google Scholar 

  • Laduron P.M. (1984) Criteria for receptor sites in binding studies. Biochem.Pharmacol. 33, 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Lentzen H. and Philippu A. (1977) Uptake of tyramine into synaptic vesicles of the caudate nucleus. Naunyn-Schm. Arch.Pharmacol. 300, 25–30.

    Article  CAS  Google Scholar 

  • List S.J. and Seeman P. (1982) 3H-Dopamine labeling of D3 dopaminergic sites in human, rat, and calf brain. J.Neurochem. 39, 1363–1373.

    Article  PubMed  CAS  Google Scholar 

  • Matthaei H., Lentzen H. and Philippu A. (1976) Competition of some biogenic amines for uptake into synaptic vesicles of the striatum. Naunyn-Schm.Arch.Pharmacol. 293, 89–96.

    Article  CAS  Google Scholar 

  • Miller R.J. (1987) Multiple calcium channels and neuronal function. Science 235, 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Near J.A. and Mahler H.R. (1983) Reserpine labels the catecholamine transporter in synaptic vesicles from bovine caudate nucleus. F.E.B.S. 158, 31–35.

    Article  CAS  Google Scholar 

  • Near J.A. (1986) 3H-Dihydrotetrabenazine binding to bovine striatal synaptic vesicles. Molec.Pharmacol. 30, 252–257.

    CAS  Google Scholar 

  • Osborne N.N. (1985) Tryptamine, tyramine and histamine immunoreactivity in specific neurones of the gastropod CNS. In, Neuropsychopharmacology of the Trace Amines (Boulton, A.A., Maitre, L., Bieck, P.R., and Riederer, P. eds) pp 115–124, Humana Press, N.J.

    Google Scholar 

  • Parti R., Ozkan E.D., Harnadek C.J. and Njus D. (1987) Inhibition of norepinephrine transport and reserpine binding by reserpine derivatives. J.Neurochem. 48, 949–953.

    Article  PubMed  CAS  Google Scholar 

  • Philippu A. (1976) Transport in intraneuronal storage vesicles. In, The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines (Paton, D.M., ed) pp 215–246, Raven Press, N.Y.

    Google Scholar 

  • Philips S.R. (1984) Analysis of trace amines: endogenous levels and the effects of various drugs on tissue concentrations in the rat. In, Neurobiology of the Trace Amines (Boulton, A.A., Baker, G.B., Dewhurst, A.C, and Sandler, M., eds) pp 127–143, Humana Press, N.J.

    Google Scholar 

  • Raiteri M., Del Carmine R., Bertollini A. and Levi G. (1977) Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur.J.Pharmacol. 41, 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Richelson E. and Pfenning M. (1984) Blockade by antidepres sants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur.J.Pharmacol. 104, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Scherman D. and Henry J.P. (1984) Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding. Molec. Pharmacol. 25, 113–122.

    CAS  Google Scholar 

  • Scherman D. (1986) Dihydrotetrabenazine binding and monoamine uptake in mouse brain regions. J.Neurochem. 47, 331–339.

    Article  PubMed  CAS  Google Scholar 

  • Stitzel R.E. (1977) The biological fate of reserpine. Pharma col. Rev. 28, 179–205.

    Google Scholar 

  • Stoof J.C., Liem A.L. and Mulder A.H. (1976) Release and receptor stimulating properties of p-tyramine in rat brain. Arch. int. Pharmacodyn. 220, 62–71.

    PubMed  CAS  Google Scholar 

  • Sweadner K.J. (1985) Ouabain-evoked norepinephrine release from intact rat sympathetic neurons: evidence for carrier-mediated release. J.Neurosci. 5, 2397–2406.

    PubMed  CAS  Google Scholar 

  • Takimoto C.S., Stittworth J.D. and Stephens J.K. (1983) 3H-Dopamine depletion from osmotically defined storage sites: effects of reserpine, 53 mM KCl, and d-amphetamine. J.Neurochem. 41, 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Toll L., Gundersen C.D. and Howard B.D. (1977) Energy utilization in the uptake of catecholamines by synaptic vesicles and adrenal chromaffin granules. Brain Res. 136, 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Ungar F., Mosnaim A.D., Ungar B. and Wolf M.E. (1977) Tyramine-binding by synaptosomes from rat brain: effect of centrally active drugs. Biol.Psychiat. 12, 661–668.

    PubMed  CAS  Google Scholar 

  • Vaccari A. (1986) High affinity binding of 3H-tyramine in the central nervous system. Br.J.Pharmacol. 89, 15–25.

    PubMed  CAS  Google Scholar 

  • Vizi E.S. (1978) Na+ -K+ -activated adenosinetriphosphatase as a trigger in transmitter release. Neuroscience 3, 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., George S.R. and Seeman P. (1985) Dependence of dopamine receptor conversion from agonist high-to low-affinity state on temperature and sodium ions. Biochem.Pharmacol. 34, 2459–2463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Vaccari, A. (1988). High Affinity Binding of p-Tyramine: A Process in Search of a Function. In: Boulton, A.A., Juorio, A.V., Downer, R.G.H. (eds) Trace Amines. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-4602-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4602-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8945-6

  • Online ISBN: 978-1-4612-4602-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics