Skip to main content

Calcium Transport Mechanisms in Endothelial Cells Regulating the Synthesis and Release of Endothelium-Derived Relaxing Factor

  • Chapter
Relaxing and Contracting Factors

Part of the book series: The Endothelium ((TEEN))

Abstract

Calcium ions (Ca2+) play an important role in excitation-contraction coupling in muscle (including vascular smooth muscle) and also in excitation-secretion coupling in neurons and endocrine cells. Endothelium-dependent relaxation of blood vessels in response to numerous pharmacological [e.g., acetylcholine, adenosine diphosphate (ADP), and so on] and physiological (e.g., increase in flow) stimuli is mediated by a still-unidentified substance (“endothelium-derived relaxing factor” or EDRF; Furchgott, 1983) released from endothelial cells (Furchgott, 1983; Peach et al., 1985; Vanhoutte et al., 1986). The sequence of events leading to endothelium-dependent relaxation is initiated by an excitation-secretion coupling mechanism in endothelial cells leading to the release of endothelium-derived relaxing factor, resembling events occurring in neurons (initiating the release of neurotransmitters) or in endocrine cells (initiating the release of a hormone). That Ca2+ plays an important role in the release of endothelium-derived relaxing factor from endothelial cells was indicated by the finding that the Ca2+ ionophore A23187 evokes endothelium-dependent relaxation in a variety of blood vessels isolated from different species (for ref., see Furchgott, 1983) and stimulates the release of endothelium-derived relaxing factor from perfused rabbit aorta (Griffith et al., 1984) and cultured endothelial cells (Cocks et al., 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cocks, T. M., Angus, J. A., Campbell, J. H., and Campbell, G. R.: Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J. Cell Physiol 123:310–320, 1985.

    Article  PubMed  CAS  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Interaction between Na+, K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ. Res. 46:826–836, 1980.

    PubMed  Google Scholar 

  • Deth, R. and Van Breemen, C.: Relative contributions of Ca2+-influx and cellular Ca2+ released during drug-induced activation of the rabbit aorta. Pflugers. Arch. Gen. Physiol. 348:13–22, 1974.

    Article  CAS  Google Scholar 

  • Dube, G. P., Baik, Y. H., Vaghy, P. L., and Schwartz, A.: Nitrendipine potentiates Bay K 8644-induced contraction of isolated porcine coronary artery: Evidence for functionally distinct dihydropyridine receptor subtypes. Biochem. Biophys. Res. Comm. 128:1295–1302, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F.: Role of the endothelium in responses of vascular smooth muscle. Circ. Res. 53:557–573, 1983.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F., Zawadzki, J. V., and Cherry, P. D.: Role of Endothelium in the Vasodilator Response to Acetylcholine, in Vasodilatation (Vanhoutte, P. M. and Leusen, I., eds.) Raven, New York, 1981.

    Google Scholar 

  • Gordon, J. L. and Martin, W.: Endothelium-dependent relaxation of the pig aorta: Relationship to stimulation of 86Rb efflux from isolated endothelial cells. Br. J. Pharmacol 79:531–541, 1983.

    PubMed  CAS  Google Scholar 

  • Griffith, T., Edwards, D., Lewis, M., Newby, A., and Henderson, A.: The nature of endothelium-derived relaxing factor. Nature 308:645–647, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Newby, A. C., Lewis, M. J., and Henderson, A. H.: Production of endothelium-derived relaxing factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovas. Res. 20:7–12, 1986.

    Article  CAS  Google Scholar 

  • Hof, R. P., Ruegg, U. T., Hof, A., and Vogel, A.: Stereoselectivity at the calcium channel; opposite action of the enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol. 7:689, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Holzmann, S.: Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic Nucleotide Res. 8:409–419, 1982.

    PubMed  CAS  Google Scholar 

  • Jurkowitz, M. S., Altschuld, R. A., Brierley, G. P., and Crague, E. L., Jr.: Inhibition of Na+-dependent Ca2+ efflux from heart mitochondria by amiloride analogues. Fed. Eur. Biochem. Soc. 162:262–265, 1983.

    Article  CAS  Google Scholar 

  • Loeb, A. L., Johns, R. A., and Peach, M. J.: Phospholipase activation by melittin releases prostacyclin and an endothelium-derived relaxing factor from rabbit aorta. Blood Vessels 23:86, 1986.

    Google Scholar 

  • Long, C. J. and Stone, T. W.: The release of endothelium-derived relaxing factor is calcium dependent. Blood Vessels 22:205–208, 1985.

    PubMed  CAS  Google Scholar 

  • Luckhoff, A. and Busse, R.: Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J. Cell. Physiol. 126:414–420, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Matlib, M. A., Lee, S. W., Depover, A., and Schwartz, A.: A specific inhibitory action of certain benzothiazepines and benzodiazepines on the sodium-calcium exchange process of heart and brain mitochondria. Eur. J. Pharmacol. 89:327–328, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. C., Schoeffter, P., and Stoclet, J. C: Insensitivity of calcium-dependent endothelium stimulation in rat isolated aorta to the calcium entry blocker, flunarizine. Br. J. Pharmacol. 85:481–487, 1985.

    PubMed  CAS  Google Scholar 

  • Nilius, B., Hess, P., Lansman, J. B., and Tsien, R. W.: A novel type of cardiac channel in ventricular cells. Nature 316:443–446, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M. C., Fox, A. P., and Tsien, R. W.: Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Peach, M. J., Loeb, A. L., Singer, H. A., and Saye, J. A.: Endothelium-derived vascular relaxing factor. Hypertension 7 (suppl. I):I94–I100, 1985.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M. and Murad, F.: Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ. Res. 52:352–357, 1983.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Schwartz, A., and Vanhoutte, P. M.: The calcium agonists Bay K 8644 and (+)202,791 stimulate the release of endothelium relaxing factor from canine femoral arteries. Eur. J. Pharmacol. 117:143–144, 1985a.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Schwartz, A., and Vanhoutte, P. M.: The effect of diltiazem and verapamil on endothelium-dependent responses in canine blood vessels. Pharmacologist 27:290, 1985.

    Google Scholar 

  • Rubanyi, G. M., Schwartz, A., and Vanhoutte, P. M.: Calcium-channel agonists stimulate the release of endothelial relaxing factor from perfused canine femoral arteries. FASEB, St. Louis, Missouri, 1986.

    Google Scholar 

  • Schoeffler, P. and Miller, R. C: Role of sodium-calcium exchange and effects of calcium entry blockers on endothelial-mediated responses in rat isolated aorta. Mol. Pharmacol. 30:53–57, 1986.

    Google Scholar 

  • Schramm, M., Thomas, G., Towart, R., and Franchowiak, G.: Novel dihydropyridine with positive inotropic action through activation of Ca++ channels. Nature 303:535–537, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Siegl, P. K. S., Cragoe, E. J., Jr., Trumble, M. J., and Kaczorowski, G. J.: Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc. Natl. Acad. Sci. USA 81:3238–3242, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Singer, H. A. and Peach, M. J.: Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4 (suppl. II): 19–25, 1982.

    PubMed  CAS  Google Scholar 

  • Spedding, M., Schini, V., Schoeffter, P., and Miller, R. C: Calcium channel activation does not increase release of endothelium-derived relaxing factors (EDRF) in rat aorta although tonic release of EDRF may modulate calcium channel activity in the smooth musccle. J. Cardiovasc. Pharmacol. 8:1130–1137, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Vaghy, P. L., Johnson, J. D., Matlib, M. A., Wang, T., and Schwartz, A.: Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J. Biol. Chem. 257:6000, 1982.

    PubMed  CAS  Google Scholar 

  • Van Breemen, C., Aaronson, P., and Loutzenhiser, R.: Sodium-calcium interactions in mammalian smooth muscle. Pharmacol. Rev. 30:167–208, 1979.

    Google Scholar 

  • Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M., and Houston, D. S.: Modulation of vascular smooth muscle contraction by the endothelium. Ann. Rev. Physiol. 48:307–320, 1986.

    Article  CAS  Google Scholar 

  • Williams, J. S., Baik, Y. H., and Schwartz, A.: Interactions between calcium agonists and antagonists in coronary smooth muscle: Role of the endothelium. Blood Vessels 23:No. 2, abstract, 1986.

    Google Scholar 

  • Winquist, R. J., Bunting, P. B., and Schofield, T. L.: Blockade of endothelium-dependent relaxation by the amiloride analog dichlorobenzamil: Possible role of Na+/Ca++ exchange in the release of endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther. 235:644–650, 1985.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Rubanyi, G.M., Schwartz, A., Vanhoutte, P.M. (1988). Calcium Transport Mechanisms in Endothelial Cells Regulating the Synthesis and Release of Endothelium-Derived Relaxing Factor. In: Vanhoutte, P.M. (eds) Relaxing and Contracting Factors. The Endothelium. Humana Press. https://doi.org/10.1007/978-1-4612-4588-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4588-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8939-5

  • Online ISBN: 978-1-4612-4588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics