Endothelium-Dependent Responses in Human Arteries

  • S. Thom
  • A. Hughes
  • P. S. Sever
Part of the The Endothelium book series (TEEN)


This series of experiments details the presence of endothelium-dependent relaxation responses in the human vasculature, defines the similarities between human EDRF and the factor first discovered in the rabbit aorta by Furchgott and Zawadzki (1980), and highlights several interspecies differences.


Vasoactive Intestinal Peptide Vasoactive Intestinal Polypeptide Forearm Blood Flow Human Coronary Artery Human Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalkjaer, C., Heagarty, A. M., Swales, J. D., and Thurston, M.: Endothelial-dependent relaxation in human subcutaneous resistance vessels. Blood Vess., 24:85–88, 1987.Google Scholar
  2. Angus, J. A., Campbell, G. R., Cocks, T. M., and Manderson, J. A.: Vasodilatation by acetylcholine is endothelium dependent: A study by sonomiorometry in canine femoral artery in vivo. J. Physiol 344:209–222, 1983.PubMedGoogle Scholar
  3. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., and MacIntyre, I.: Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56, 1985.PubMedCrossRefGoogle Scholar
  4. Burnstock, G. and Kennedy, C.: A dual functional for adenosine 5′-triphosphate in the regulation of vascular tone. Circ. Res. 58:319–330, 1986.PubMedGoogle Scholar
  5. Cherry, P. D., Furchgott, R. F., Zawadzki, J. V., and Jothianandan, D.: Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc. Natl. Acad. Sci. USA 79:2106–2110, 1982.PubMedCrossRefGoogle Scholar
  6. Cocks, J. M. and Angus, J. A.: Endothelium dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305:627–630, 1983.PubMedCrossRefGoogle Scholar
  7. Creager, M. A., Liang, C. S., and Coffman, J. D.: Beta-adrenergic mediated vasodilator response to insulin in the human forearm. J. Pharmacol. Exp. Ther. 235:709–714, 1985.PubMedGoogle Scholar
  8. Da Costa, D. F., Mcintosh, C, Bannister, R., Christensen, N. J., and Mathias, C. J.: Unmasking of the cardiovascular effects of carbohydrate in subjects with sympathetic denervation. J. Hyperten. 3:S447-S448, 1985.Google Scholar
  9. Davies, J. M. and Williams, K. I.: Relaxation of the rat aorta by vasoactive intestinal polypeptide is endothelial cell dependent. J. Physiol. 343:65P, 1983.Google Scholar
  10. De Mey, J. G. and Vanhoutte, P. M.: Heterogeneous behaviour of the canine arterial and venous wall. Importance of the endothelium. Circ. Res. 51: 439–447, 1982.Google Scholar
  11. D’Orleans-Juste, P., Dion, S., Mizrahi, J., and Regoli, D.: Effects of peptides and non-peptides on isolated arterial smooth muscles. Eur. J. Pharmacol. 114:9–21, 1985.PubMedCrossRefGoogle Scholar
  12. Duff, F., Greenfield, A. D. M., Shepherd, J. T., and Thompson, I. D.: A quantitative study of the response to acetylcholine and histamine of the blood vessels of the human hand and forearm. J. Physiol. 120:160–170, 1953.PubMedGoogle Scholar
  13. Eglen, R. M. and Whiting, R. L.: Determination of the muscarinic receptor subtype mediating vasodilatation. Br. J. Pharmacol 84:3–5, 1985.PubMedGoogle Scholar
  14. Folkow, B.: Physiological aspects of primary hypertension. Physiol. Rev. 62:347–428, 1982.PubMedGoogle Scholar
  15. Furchgott, R. F. and Zawadzki, J.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.PubMedCrossRefGoogle Scholar
  16. Garland, C. J. and Keatinge, W. R.: Constrictor actions of acetylcholine, 5-hydroxytryptamine and histamine on bovine coronary artery inner and outer muscle. J. Physiol. 327:363–376, 1982.PubMedGoogle Scholar
  17. Ginsburg, R. and Zera, P.H.: Endothelial relaxant factor in the human epicardial coronary artery. Circulation 70 (suppl. II):122, 1984.Google Scholar
  18. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C., and Henderson, A. H.: The nature of endothelium derived vascular relaxant factor. Nature 308:645–647, 1984.PubMedCrossRefGoogle Scholar
  19. Hardebo, J. E., Hanko, J., Kahrstrom, J., and Owman, C: Endothelium-dependent relaxation in cerebral arteries. J. Cereb. Blood Flow Metab. 5:(suppl. 1):S533–S534, 1985.Google Scholar
  20. Kalsner, S.: Cholinergic mechanisms in human coronary artery preparations: Implications of species differences. J. Physiol. 358:509–526, 1985.PubMedGoogle Scholar
  21. Martin, W., Furchgott, R. F., Villani, G. M., and Jothianandan, D.: Depression of contractile responses in rat aorta by spontaneously released endothelium derived relaxing factor. J. Pharmacol. Exp. Ther. 237:529–538, 1986.PubMedGoogle Scholar
  22. Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Selective blockade of endothelium dependent and glyceryl trinitrate induced relaxation by haemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Jher. 232:708–716, 1985.Google Scholar
  23. McGuire, P. G. and Twietmeyer, A. T.: Aortic endothelial functions in developing hypertension. Hypertension 7:483–490, 1985.PubMedGoogle Scholar
  24. Muldoon, S. M., Hart, J. L., Bowen, K., and Freas, W.: Effects of halothane on canine arteries: Role of the endothelium. Fed. Proc. 44:1835, 1985.Google Scholar
  25. Owen, M. P. and Bevan, J. A.: Acetylcholine endothelial dependent vasodilatation increases as artery diameter decreases in the rabbit ear. Experientia 41:1057–1058, 1985.PubMedCrossRefGoogle Scholar
  26. Page, M. M. and Watkins, P. J.: Provocation of postural hypotension by insulin in diabetic autonomic neuropathy. Diabetes 25:90–95, 1976.PubMedCrossRefGoogle Scholar
  27. Parnavelas, J. G., Kelly, W., and Burnstock, G.: Ultrastructural localisation of choline acetyltransferase in vascular endothelial cells in rat brain. Nature 316:724–725, 1985.PubMedCrossRefGoogle Scholar
  28. Pearson, J. D., Carleton, J. S., and Gordon, J. C: Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth muscle cells in culture. Biochem. J. 190:421-429, 1980.PubMedGoogle Scholar
  29. Posloncec, B., Uvnas-Moberg, K., Hagerman, M., Castennsson, S., and Uvnas, B.: Release of an insulin-like peptide from perfused extirpated cat legs in response to electrical stimulation of the sciatic and brachial nerves and to administration of ACh, bombesin, oxytocin and glibenclamide. Acta Physiol. Scand. 125:195–203, 1985.PubMedCrossRefGoogle Scholar
  30. Rapoport, R. M., Schwartz, K., and Murad, F.: Effects of Na+, K+-pump inhibitors and membrane depolarizing agents on acetylcholine induced endothelium dependent relaxation and cyclic GMP accumulation in rat aorta. Eur. J. Pharmacol. 110:203–209, 1985.PubMedCrossRefGoogle Scholar
  31. Thorn, S., Hughes, A. D., Goldberg, P., Martin, G., Schachter, M., and Sever, P. S. The actions of calcitonin gene related peptide and vasoactive intestinal peptide as vasodilators in man in vivo and in vitro. Br. J. Pharmacol. 24:139–144, 1987.Google Scholar
  32. Van de Voorde, J. and Leusen, I.: Role of the endothelium in vasodilator response of rat thoracic aorta to histamine. Eur. J. Pharmacol. 87:113–120, 1983.PubMedCrossRefGoogle Scholar
  33. Van de Voorde, J. and Leusen, I.: Endothelium dependent and independent relaxation of aortic rings from hypertensive rats. A. J. Physiol. 250:H711-H717, 1986.Google Scholar
  34. Winquist, R. J., Bunting, P. B., Baskin, E. P., and Wallace, A. A.: Decreased endothelium dependent relaxation in New Zealand genetic hypertensive rats. J. Hyperten. 2:541–545, 1984.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • S. Thom
  • A. Hughes
  • P. S. Sever

There are no affiliations available

Personalised recommendations