Peroxide Scavenging by Cu(II) Sulfate and Cu(II) (3,5-Diisopropylsalicylate)2

  • Gregory A. Reed
  • Cherukury Madhu
Part of the Experimental Biology and Medicine book series (EBAM, volume 16)


The production of reactive oxygen species (ROS) in biological systems provides key mediators of physiological and pathological processes. Arguably the most important of this class are the partially reduced oxygen species, which include the superoxide anion radical (O2 ÷), hydrogen peroxide (H2O2), and the hydroxyl radical (•OH). These species have been proposed as mediators of both inflammation1–3 and in various stages in carcinogenesis3–5. One line of evidence supporting a role for ROS in these processes drives from the ability of exogenous scavengers for ROS to inhibit the process.


Reactive Oxygen Species Bovine Serum Albumin Catalase Activity Scavenge Hydrogen Peroxide Catalase Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B.; Gutteridge, J. M. C. Biochem. J. 1984, 219, 1.PubMedGoogle Scholar
  2. 2.
    DiGuiseppi, J.; Fridovich, I. CRC Crit. Rev. Toxicol. 1984, 12, 315.CrossRefGoogle Scholar
  3. 3.
    Ames, B. N. Science 1983, 221, 1256.PubMedCrossRefGoogle Scholar
  4. 4.
    Kensler, T. W.; Trush, M. A. Env. Mutagenesis 1984, 6, 593.CrossRefGoogle Scholar
  5. 5.
    Troll, W.; Weisner, R. Ann. Rev. Pharmacol. Toxicol. 1985, 25, 509.CrossRefGoogle Scholar
  6. 6.
    Sorenson, J. R. J. J. Med. Chem. 1976, 19, 135.CrossRefGoogle Scholar
  7. 7.
    Solanki, V.; Yotti, L.; Logani, M. K.; Slaga, T. J. Carcinogenesis 1984, 5, 129.CrossRefGoogle Scholar
  8. 8.
    Kensler, T. W.; Trush, M. A. Biochem. Pharmacol. 1983, 32, 3485.PubMedCrossRefGoogle Scholar
  9. 9.
    Kensler, T. W.; Bush, D. M.; Kozumbo, W. J. Science 1983, 221, 75.CrossRefGoogle Scholar
  10. 10.
    Nakamura, Y.; Colburn, N. H.; Gindhart, T. D. Carcinogenesis 1985, 6, 229.PubMedCrossRefGoogle Scholar
  11. 11.
    Leuthauser, S. W. C; Oberley, L. W.; Oberley, T. D.; Sorenson, J. R. J.; Ramakrishna, K. J. Natl. Cancer Inst. 1981, 66, 1077.Google Scholar
  12. 12.
    Oberley, L. W.; Rogers, K. L.; Schutt, L.; Oberley, T. D.; Leuthauser, S. W. C; Sorenson, J. R. J. J. Natl. Cancer Inst. 1983, 71, 1089.Google Scholar
  13. 13.
    de Alvare, L. R.; Goda, K.; Kimura, T. Biochem. Biophys. Res. Commun. 1976, 69, 687.CrossRefGoogle Scholar
  14. 14.
    Younes, M.; Lengfelder, E.; Richter, C; Shubotz, L. M.; Weser, U. In: Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase (J. V. Bannister and H. A. O. Hill, eds); Elsevier; New York, 1980; p. 336.Google Scholar
  15. 15.
    Sigel, H.; Angew. Chem. Internat. Ed. 1969, 8, 167.CrossRefGoogle Scholar
  16. 16.
    Flohe, L.; Otting, F. In: Methods in Enzymology, Vol. 105 (L. Packer, ed.); Academic Press; Orlando, 1984; p. 93.Google Scholar
  17. 17.
    Van der Ouderaa, F. J.; Buyrenhek, M. In: Methods in Enzymology, Vol. 86 (W. E. M. Lands and W. C. Smith, eds.); Academic Press, New York, 1982; p. 60.Google Scholar
  18. 18.
    Betts, W. H.; Cleland, L. G., Whithehouse, M. W. In: Inflammatory Diseases and Copper (J. R. J. Sorenson, ed.); Humana Press; Clifton; 1982; p. 553.Google Scholar
  19. 19.
    Sorenson, J. R. J., personal communication.Google Scholar
  20. 20.
    Oberly, L. W.; Leuthauser, S. W. C; Pasternack, R. F.; Oberley, T. D.; Schutt, L.; Sorenson, J. R. J. Agents and Actions 1984, 15, 535.CrossRefGoogle Scholar
  21. 21.
    Dunford, H. B. In: Advances in Inorganic Biochemistry, Vol. 4 (G. L. Eichorn and L. G. Marzilli, eds.); Elsevier Biomedical; New York, 1982; p. 41.Google Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Gregory A. Reed
    • 1
  • Cherukury Madhu
    • 1
  1. 1.University of Kansas Medical CenterKansas CityUSA

Personalised recommendations