Regulation of Serotonin Receptors and Responsiveness in the Brain

  • Alan Frazer
  • Steve J. Offord
  • Irwin Lucki
Part of the The Receptors book series (REC)


The advent of radioligand binding methodology in vitro has greatly facilitated the study and understanding of the properties and regulation of many types of receptor sites, including those for 5-hydroxytryptamine (5-HT; serotonin). Given the many important behavioral functions ascribed to 5-HT, it is not surprising that much of this type of work has focused on serotonin receptors in the central nervous system (CNS). It is this body of research that will be reviewed in this chapter. In reviewing this information, we were impressed with obvious differences in agonist-induced regulation of receptors for 5-HT in comparison with that found for receptors of other putative transmitter substances (e.g., dopamine [DA], norepinephrine [NE], acetylcholine [ACh]). Whereas in other transmitter systems there is reasonably good concordance between drug-induced alterations in receptor density and responses linked to the receptors, this is not a consistent observation for serotonergic systems. In particular, there is a disparity between the decrease in the number of receptors for 5-HT caused by many antidepressant drugs and the ability of these same drugs to enhance certain electrophysiological responses elicited by 5-HT. Issues of this nature will be emphasized in this chapter.


Serotonin Receptor Repeated Administration Dorsal Raphe Nucleus Serotonergic Neuron Nicotinic Cholinergic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrass, I. B., Davis, J. L., and Scarpace, P. J. (1982) Isoproterenol responsiveness and myocardial beta-adrenergic receptors in young and old rats. J. Gerentol. 37, 156–160.Google Scholar
  2. Aghajanian, G. K. (1981) The modulatory role of serotonin at multiple receptors in brain, in Serotonin Neurotransmission and Behavior (Jacobs, B. B. and Gelpesin, A., eds.), MIT, Cambridge Mass., pp. 156–185.Google Scholar
  3. Aghajanian, G. K. (1982) Regulation of serotonergic neuronal activity: Autoreceptors and pacemaker potentials, in Advances Biochemistry Psychopharmacology 34 (Ho, B. T., Schoolar, J. C., and Usdin, E., eds.), Raven, New York, pp. 173–181.Google Scholar
  4. Aghajanian, G. K., Foote, W. E., and Sheard, M. H. (1968) Lysergic acid diethylamide: Sensitive neuronal units in the median raphé. Science 161, 706–708.PubMedGoogle Scholar
  5. Aghajanian, G. K., Foote, W. E., and Sheard, M. H. (1970) Action of psychotogenic drugs on single midbrain Raphé neurons. J. Pharmacol. Exp. Ther. 171, 178–187.PubMedGoogle Scholar
  6. Aghajanian, G. K. and Haigler, H. J. (1975) Hallucinogenic indoleamines: Preferential action upon presynaptic serotonin receptors. Psychopharmacol. Commun. 1, 619–629.PubMedGoogle Scholar
  7. Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986) A G protein couples serotonin and GABAb receptors to the same channels in hippocampus. Science 234, 1261–1265.PubMedGoogle Scholar
  8. Appel, J. B. and Freedman, D. X. (1968) Tolerance and cross-tolerance among psychotomimetic drugs. Psychopharmacologia 13, 267–274.PubMedGoogle Scholar
  9. Atterwill, C. K. (1980) Lack of effect of repeated electroshock on [3H]spiroperidol and [3H]5-hydroxytryptamine binding and cholinergic parameters in rat brain. J. Neurochem. 35, 729–734.PubMedGoogle Scholar
  10. Axelsson, J. and Thesleff, S. (1958) The densensitizing effect of acetycholine on the mammalian end plate. Acta Physiol. Scand. 43, 313.Google Scholar
  11. Azmitia, E. C., Buchan, A. M., and Williams, J. H. (1978) Structural and functional restoration by collateral sprouting of hippocampal 5-HT axons. Nature 274, 374–376.PubMedGoogle Scholar
  12. Bedard, P. and Pycock, C. J. (1977) “Wet-dog” shake behavior in the rat: A possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacol. 16, 663–670.Google Scholar
  13. Bennett, J. P. and Snyder, S. H. (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes: Relationship to postsynaptic receptors. Mol. Pharmacol. 12, 373–389.PubMedGoogle Scholar
  14. Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P., and Hall, Z. W. (1972) Binding of alpha-bungarotoxin to acetylcholine receptors in mammalian muscle. Proc. Nat. Acad. Sci. 69, 147–151.PubMedGoogle Scholar
  15. Bergstrom, D. A. and Keller, K. J. (1979) Adrenergic and serotonergic receptor binding in rat brain after chronic desmethylimipramine treatment. J. Pharmacol Exp. Therap. 209, 256–261.Google Scholar
  16. Blackburn, T. P., Foster, G. A., Heapy, C. G., and Kemp, J. D. (1980) Unilateral 5,7-dihydroxytryptamine lesions of the dorsal Raphé nucleus (DRN) and rat rotational behavior. Eur. J. Pharmacol. 67, 427–438.PubMedGoogle Scholar
  17. Blackshear, M. A., Friedman, R. L., and Sanders-Bush, E. (1983) Acute and chronic effects of serotonin (5-HT) antagonists on serotonin binding sites. Naunyn-Schmiedeberg’s Arch. Pharmacol. 324, 125–129.Google Scholar
  18. Blackshear, M. A., Martin, L. L., and Sanders-Bush, E. (1986) Adaptive changes in the 5-HT2 binding site after chronic administration of agonists and antagonists. Neuropharmacol. 25, 1267–1271.Google Scholar
  19. Blackshear, M. A. and Sanders-Bush, E. (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J. Pharmacol. Exp. Therap. 221, 303–308.Google Scholar
  20. Blackshear, M. A., Steranka, L. R., and Sanders-Bush, E. (1981) Multiple serotonin receptors: Regional distribution and effect of Raphé lesions. Eur. J. Pharmacol. 76, 325–334.PubMedGoogle Scholar
  21. Blier, P. and de Montigny, C. (1980) Effect of chronic tricyclic antidepressant treatment on the serotonergic autoreceptor: A microiontophoretic study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 314, 123–128.Google Scholar
  22. Blier, P. and de Montigny, C. (1983) Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neuro-tranmission in the rat. J. Neurosci. 3, 1270–1278.PubMedGoogle Scholar
  23. Blier, P. and de Montigny, C. (1985) Serotonergic but not noradrenergic neurons in rat CNS adapt to long-term treatment with monamine oxidase inhibitors. Neuroscience 16, 949–955.PubMedGoogle Scholar
  24. Blier, P., de Montigny, C., and Azzaro, A. J. (1986) Modification of serotoneric and noradrenergic neurotransmission by repeated administration of monoamine oxidase inhibitors: Electrophysiological studies in the rat central nervous system. J. Pharmacol. Exp. Ther. 237, 987–994.PubMedGoogle Scholar
  25. Blier, P., de Montigny, C., and Tardif, J. (1984) Effect of two antidepressant drugs, mianserin and indalopine, on the serotonergic system: Single cell studies in the rat. Psychopharmacol. 84, 242–249.Google Scholar
  26. Boyson, S. J., McGonigle, P., Reuter, S., Schambron, D., and Molinoff, P. B. (1986) Quantitative autoradiography of D-1 and D-2 dopamine receptors following administration of neuroleptics. Soc. Neurosci. Abstr. 12, 192.Google Scholar
  27. Bradshaw, C. M., Stoker, M. J., and Szabadi, E. (1983) Comparison of the neuronal responses to 5-hydroxytryptamine, noradrenaline and phenylephrine in the cerebral cortex: Effects of haloperidol and methysergide. Neuropharmacol. 22, 677–685.Google Scholar
  28. Briley, M., Assie, M. B., and Charveron, M. (1985) In vivo binding of 3H-ketanserin appears to label noninnervated serotonin S2-receptors. Biol. Psychiatry-New Prospects 5, 230–233.Google Scholar
  29. Buckholtz, N. S., Freedman, D. X., and Middaugh, L. D. (1985) Daily LSD administration selectively decreases serotonin2 receptor binding in rat brain. Eur. J. Pharmacol. 109, 421–425.PubMedGoogle Scholar
  30. Bylund, D. B. and Martinez, J. R. (1980) Alpha-2-adrenergic receptors appear in rat salivary glands after reserpine treatment. Nature 285, 229–230.PubMedGoogle Scholar
  31. Bylund, D. B. and U’Prichard, D. C. (1983) Characterization of alpha-1 and alpha-2-adrenergic receptors. Int. Rev. Neurobiol. 24, 343–431.PubMedGoogle Scholar
  32. Cannon, W. B. and Rosenblueth, A. (1949) The Supersensitivity of Denervated Structures. New York, Macmillan.Google Scholar
  33. Carlton, J. and Rowland, N. (1984) Anorexia and brain serotonin: Development of tolerance to the effects of fenfluramine and quipazine in rats with serotonin-depleting lesions. Pharmacol. Biochem. Behav. 20, 739–745.PubMedGoogle Scholar
  34. Chang, H. Y., Klein, R. M., and Kunos, G. (1982) Selective desensitization of cardiac beta-adrenoceptors by prolonged in vivo infusion of catecholamines in rats. J. Pharmacol. Exp. Therap. 221 784–789.Google Scholar
  35. Chaput, Y., de Montigny, C., and Blier, P. (1986) Effects of a selective 5-HT reuptake blocker, Citalopram, on the sensitivity of 5-HT autoreceptors: Electrophysiological studies in the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 333, 342–348.Google Scholar
  36. Clements-Jewery, S. and Robson, P. A. (1982) Intact 5-HT neuroterminals are not required for 5-HT2 receptor down-regulation by amitriptyline. Neuropharmacol. 21, 725–727.Google Scholar
  37. Cohen, M. L. and Fuller, R. W. (1983) Antagonism of vascular serotonin receptors by m-chlorophenylpiperazine and m-trifluoromethylpiperazine. Life Sci. 32, 711–718.PubMedGoogle Scholar
  38. Cooper, D. M. F. (1983) Receptor-mediated stimulation and inhibition of adenylate cyclase. Curr. Top. Membr. Transp. 18, 67–84.Google Scholar
  39. Corne, S. J., Pickering, R. W., and Warner, B. T. (1963) A method for assessing the effect of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. 20, 106–120.Google Scholar
  40. Creese, I., Burt, D. R., and Snyder, S. H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197, 596–598.PubMedGoogle Scholar
  41. Crews, F. T., Scott, J. A., and Shorstein, N. H. (1983) Rapid down-regulation of serotonin2 receptor binding during combined tricyclic antidepressant-alpha2 antagonist administration. Neuropharmacol. 22, 1203–1209.Google Scholar
  42. de Montigny, C. and Aghajanian, K. (1977) Preferential action of 5-methoxydimethyltryptamine and 5-methoxytryptamine on presynaptic serotonin receptors: A comparative iontophoretic study with LSD and serotonin. Neuropharmacol. 16, 811–818.Google Scholar
  43. de Montigny, C. and Aghajanian, G. K. (1978) Tricyclic antidepressants: Long-term treatment increases responsitivity of forebrain neurons to serotonin. Science 202, 1303–1306.PubMedGoogle Scholar
  44. de Montigny, C., Blier, P., Caille, G., and Kouassi, E., (1981) Pre- and postsynaptic effects of zimelidine and norzimelidine on the serotonergic system: Single cell studies in the rat. Acta. Psychiat. Scand. 63, 79–90.Google Scholar
  45. de Montigny, C., Blier, P., and Chaput, Y. (1984) Electrophysiologically-identified serotonin receptors in the rat CNS. Neuropharmacol. 23, 1511–1520.Google Scholar
  46. de Montigny, C., Wang, R. Y., Reader, T. A., and Aghajanian, G. K. (1980) Monoaminergic denervation of the rat hippocampus: Microiontophoretic studies on pre- and postsynaptic supersensitivity to norepinephrine and serotonin. Brain Res. 200, 363–376.PubMedGoogle Scholar
  47. Deshmukh, P. P., Yamamura, H. I., Woods, L., and Nelson, D. L (1983) Computer-assisted autoradiographic localization of subtypes of serotonin1 receptors in rat brain. Brain Res. 288, 338–343.PubMedGoogle Scholar
  48. DeVivo, M. and Maayani, S., (1986) Characterization of the 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J. Pharmacol Exp. Therap. 238, 248–253.Google Scholar
  49. Dumbrille-Ross, A. and Tang, S. W. (1983) Manipulations of synaptic serotonin: Discrepancy of effects on serotonin S1 and S2 sites. Life Sci. 32, 2677–2684.PubMedGoogle Scholar
  50. Dumbrille-Ross, A., Tang, S. W., and Coscina, D. V. (1981) Differential binding of 3H-imipramine and 3H-mianserin in rat cerebral cortex. Life Sciences 29, 2049–2058.PubMedGoogle Scholar
  51. Dumbrille-Ross, A., Tang, S. W., and Coscina, D. V. (1982) Lack of effect of raphé lesions on serotonin S2 receptor changes induced by amitriptyline and desmethylimipramine. Psychiatry Res. 7, 145–151.PubMedGoogle Scholar
  52. Echlin, F. and McDonald, J. (1954) The supersensitivity of chronically isolated and partially isolated cerebral cortex as a mechanism in focal cortical epilepsy. Trans. Am. Neurol. Ass. 79, 75.Google Scholar
  53. Engel, G., Göthert, M., Hoyer, D., Schlicker, E., and Hillenbrand, K., (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) auto-receptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedebergfs Arch. Pharmacol. 332, 1–7.Google Scholar
  54. Engel, G., Göthert, M., Muller-Schweinitzer, M., Schlicker, E., Sistonen, L., and Stadler, P. A. (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn-Schmiedeberg’s Arch. Pharmacol. 324, 116–124.Google Scholar
  55. Ferron, A., Descarries, L., and Reader, T., (1982) Altered neuronal responsiveness to biogenic amines in rat cerebral cortex after serotonin denervation or depletion. Brain Res. 231, 93–108.PubMedGoogle Scholar
  56. Fillion, G. M. B., Rousselle, J. C., Fillion, M. P., Beaudoin, D. M., Goiny, M. R., Deniau, J. M., and Jacob, J. J. (1978) High-affinity binding of 3H-5-hydroxytryptamine to brain synaptosomal membranes: Comparison with 3H-lysergic acid diethylamide binding. Mol. Pharmacol. 14, 50–59.PubMedGoogle Scholar
  57. Forloni, G. L., Consolo, S., Grombi, P., Wang, J. X., Mennini, T., and Ladinsky, H. (1983) Modifications in recognition sites for neurotransmitters in rat hippocampus by kainic acid lesion. Brain Res. 274, 165–170.PubMedGoogle Scholar
  58. Frazer, A. and Conway, P. (1984) Pharmacologic mechanisms of action of antidepressants. Psych. Clinics N. Am. 7, 575–586.Google Scholar
  59. Friedman, E., Cooper, T. B., and Dallob, A. (1983) Effects of chronic antidepressant treatment on serotonin receptor activity in mice. Eur. J Pharmacol.. 89, 69–76.PubMedGoogle Scholar
  60. Fuller, R. W., Snoddy, H. D., Mason, N. R., Hemrick-Luecke, S. K., and Clemens, J. A. (1981) Substituted piperazines as central serotonin agonists: Comparative specificity of the postsynaptic actions of quipazine and m-trifluoromethylpiperazine. J. Pharmacol. Exp. Therap.. 218, 636–641.Google Scholar
  61. Fuller, R. W., Snoddy, H. D., Mason, N. R., and Molly, B. B. (1978) Effect of R-(m-trifluoromethylphenyl) piperazine on 3H-serotonin binding to membranes from rat brain in vitro and on serotonin turnover in rat brain in vivo. Eur. J. Pharmacol. 52, 11–16.PubMedGoogle Scholar
  62. Gandolfi, O., Barbaccia, M. L., and Costa, E. (1984) Comparison of iprindole, Imipramine and mianserin action of brain serotonergic and beta adrenergic receptors. J. Pharmacol. Exp. Therap. 229, 782–786.Google Scholar
  63. Gandolfi, O., Barbaccia, M. L., and Costa, E., (1985) Different effects of serotonin antagonists on 3H-mianserin and 3H-ketanserin recognition sites. Life Sci. 36, 713–721.PubMedGoogle Scholar
  64. Goodwin, G. M., DeSouza, R. J., and Green, A. R. (1985a) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Neuropharmacol. 24, 1187–1194.Google Scholar
  65. Goodwin, G. M., DeSouza, R. J., and Green, A. R. (1985b) Presynaptic serotonin receptor-mediated response in mice attenuated by antidepressant drugs and electroconvulsive shock. Nature 317, 531–533.PubMedGoogle Scholar
  66. Goodwin, G. M., Green, A. R., and Johnson, P. (1984) 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behavior following antidepressant treatment to mice. Br. J. Pharmacol. 83, 235–242.PubMedGoogle Scholar
  67. Grahame-Smith, D. G. (1971) Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and 1-tryptophan. J. Neurochem. 18, 1053–1066.PubMedGoogle Scholar
  68. Gudelsky, G. A., Koenig, J. I., Jackman, H., and Meltzer, H. Y. (1986) Suppression of the hypo- and hyperthermic responses to 5-HT agonists following the repeated administration of monoamine oxidase inhibitors. Psychopharmacol. 90, 403–407.Google Scholar
  69. Haigler, H. J. and Aghajanian, G. K. (1973) Mescaline and LSD: Direct and indirect effects of serotonin-containing neurons in the rat brain. Eur. J. Pharmacol. 21, 53–60.PubMedGoogle Scholar
  70. Haigler, H. J. and Aghajanian, G. K. (1974) Lysergic acid diethylamide and serotonin: A comparison of effects on serotonergic neurons and neurons receiving a serotonergic input. J. Pharmacol. Exp. Therap. 188, 688–699.Google Scholar
  71. Hall, M. D., El Mestikawy, S., Emerit, M. B., Pichat, L., Hamon, M., and Gozlan, H. (1985) [3H]-8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J. Neurochem. 44, 1685–1696.PubMedGoogle Scholar
  72. Hall, H., Ross, S. B., and Sallemark, M. (1984) Effect of destruction of central noradrenergic and serotonergic nerve terminals by systemic neurotoxins on the long-term effect of antidepressants on beta-adrenoceptors and 5-HT2 binding sites in the rat cerebral cortex. J. Neural Trans. 59, 9–23.Google Scholar
  73. Harden, T. K. (1983) Agonist-induced desensitization of beta-adrenergic receptor-linked adenylate cyclase. Pharmacol. Res. 35, 5–32.Google Scholar
  74. Hartzeil, H. C. and Fambrough, D. M. (1972) Acetylcholine receptors: Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. Gen. Phys. 60, 248–262.Google Scholar
  75. Heal, D. J., Philpot, J., Molyneux, S. G., and Metz, A. (1985) Intracerebroventricular administration of 5,7-dihydroxytryptamine to mice increases both head-twitch response and the number of cortical 5-HT2 receptors. Neuropharmacol. 24, 1201–1205.Google Scholar
  76. Heal, D. J., Philpot, J., O’Shaughnessy, K. M., and Davies, C. L. (1986) The influence of central noradrenergic function on 5-HT2-mediated head-twitch responses in mice: Possible implications for the actions of antidepressant drugs. Psychopharmacol. 89, 414–420.Google Scholar
  77. Helmeste, D. M. (1986) Rapid down-regulation of S2 serotonin receptors by antidepressants: Noradrenergic-serotonergic interactions. Life Sci. 39, 223–227.PubMedGoogle Scholar
  78. Helmeste, D. M. and Tang, S. W. (1983) Unusual acute effects of antidepressants and neuroleptics on S2-serotonergic receptors. Life Sci. 33, 2527–2533.PubMedGoogle Scholar
  79. Hess, E. J., Albers, L. J., Le, H., and Creese, I. (1986) Effects of chronic SCH 23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: Potentiated behavioral responses to a D2 dopamine agonist after selective Dl dopamine receptor upregulation. J. Pharmacol Exp. Therap. 238, 846–854.Google Scholar
  80. Hole, K., Johnson, G. E., and Berge, O. G. (1977) 5,7-Dihydroxytryptamine lesions of the ascending 5-hydroxytryptamine pathways: Habituation, motor activity and agonistic behavior. Pharmacol. Biochem. Behav. 7, 205–210.PubMedGoogle Scholar
  81. Hoyer, D., Pazos, A., Probst, A., and Palacios, J. M. (1986) Serotonin receptors in human brain. II. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res. 376, 97–107.PubMedGoogle Scholar
  82. Hyttel, J., Overo, K. F., and Amt, J. (1984) Biochemical effects and drug levels in rats after long-term treatment with the specific 5-HT uptake inhibitor, Citalopram. Psychopharmacol. 83, 20–27.Google Scholar
  83. Jacobs, B. L. (1976) An animal model for studying central serotonergic responses. Life Sci. 19, 777–786.PubMedGoogle Scholar
  84. Jacobs, B. L. and Klemfuss, H. (1975) Brain stem and spinal cord mediation of a serotonergic behavioral syndrome. Brain Res. 100, 450–457.PubMedGoogle Scholar
  85. Jacobs, B. L. and Trulson, M. E. (1980) Mechanism of action of LSD. Amer. Sci. 67, 396–404.Google Scholar
  86. Jakobs, K. H., Aktories, K., and Schultz, G. (1983) Inhibitory coupling of hormone and neurotransmitter receptors to adenylate cyclase. J. Recept. Res. 3, 137–149.PubMedGoogle Scholar
  87. Kellar, K. J., Cascio, C. S., Butler, J. A., and Kurtzke, R. N. (1981) Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. Eur. J. Pharmacol. 69, 515–518.PubMedGoogle Scholar
  88. Kendall, D. A. and Nahorski, S. R. (1983) Temperature-dependent 5-hydroxytryptamine (5-HT)-sensitive [3H]spiperone binding to rat cortical membranes: Regulation by guanine nucleotide and antidepressant treatment. J. Pharmacol Exp. Ther. 227, 429–434.PubMedGoogle Scholar
  89. Lakoski, J. M. and Aghajanian, G. K. (1985) Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphé nucleus. Neuropharmacol. 24, 265–273.Google Scholar
  90. Larson, A. A. (1984) Acute and chronic effects of LSD and 5-MeODMT on raphé-evoked dorsal root potentials in the cat. Life Sci. 34, 1193–1201.PubMedGoogle Scholar
  91. Lebrecht, V. and Nowack, J. Z. (1980) Effect of single and repeated electroconvulsive shock on serotonergic system in rat brain. II. Behavioral studies. Neuropharmacol. 19, 1055–1061.Google Scholar
  92. Leysen, J. E. (1984) Serotonin receptor binding sites: Is there pharmacological and clinical significance? Med. Biol. 61, 139–143.Google Scholar
  93. Leysen, J. E., Geerts, R., Gommeren, W., Verwimp, M., and Van Gompel, P. (1982) Regional distribution on serotonin-2 receptor binding sites in brain and effects of neuronal lesions. Arch. Int. Pharmacodyn. 256, 301–305.PubMedGoogle Scholar
  94. Leysen, J. E. and Lauderon, P. M. (1977) A serotonergic component of neuroleptic receptors Arch. Int. Pharmacodyn. Therap. 230, 337–339.Google Scholar
  95. Leysen, J. E., Van Gompel, P., Gommeren, W., Woestenborghs, R., and Janseen, P. A. J. (1986) Down regulation of serotonin-S2 receptor sites in rat brain by chronic treatment with the serotonin-S2 antagonists: Ritanserin and setoperone. Psychopharmacol. 88, 434–444.Google Scholar
  96. Leysen, J. E., Van Gompel, P., Verwimp, M., and Niemegeers, C. J. E. (1983) Role and localization of serotonin2 (S2)-receptor-binding sites: Effects of neuronal lesions, in CNS Receptors-Prom Molecular Pharmacology to Behavior, (Mandel, P. and DeFeudis, F. V., eds.) Raven, New York, pp. 373–383.Google Scholar
  97. Lucki, I. and Frazer, A. (1982) Prevention of the serotonin syndrome in rats by repeated administration of monoamine oxidase inhibitors but not tricyclic antidepressants. Psychopharmacol. 77, 205–211.Google Scholar
  98. Lucki, I. and Frazer, A. (1985) Changes in behavior associated with serotonin receptors following repeated treatment with antidepressant drugs, in Behavioral Pharmacology: The Current Status. (Seiden, L. S. and Balster, R. L., eds.) Alan R. Liss, New York, pp. 339–351.Google Scholar
  99. Lucki, I. and Minugh-Purvis, N. (1987) Serotonin-induced head-shaking behavior in rats does not involve receptors located in the frontal cortex. Brain Res. 420, 403–406.PubMedGoogle Scholar
  100. Lucki, I., Nobler, M. S., and Frazer, A. (1984) Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J. Pharmacol Exp. Therap. 228, 133–139.Google Scholar
  101. Maggi, A., U’Prichard, D. C., and Enna, S. J. (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur. J. Pharmacol. 61, 91–98.PubMedGoogle Scholar
  102. Maj, J., Melzacka, M., Magalnicka, E., and Daniel, W. (1982) Differential pharmacokinetic and pharmacological effects following acute and chronic treatment with imipramine. J. Neural. Trans. 54, 219–228.Google Scholar
  103. Marcinkiewicz, M., Verge, D., Gozlan, H., Pichat, L., and Hamon, M. (1984) Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res. 291, 159–163.PubMedGoogle Scholar
  104. Markstein, R., Hoyer, D., and Engel, G. (1986) 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg’s Arch. Pharmacol. 333, 335–341.Google Scholar
  105. Martin, L. L. and Sanders-Bush, E. (1982) Comparison of the pharmacological characteristics of 5-HT1 and 5-HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn-Schmiedeberg’s Arch. Pharmacol. 321, 165–170.Google Scholar
  106. Maura, G. and Raiteri, M. (1984) Functional evidence that chronic drugs induce adaptive changes of central autoreceptors regulating serotonin release. Eur. J. Pharmacol. 97, 309–313.PubMedGoogle Scholar
  107. McDonald, D., Stancel, G. M., and Enna, S. J. (1984) Binding and function of serotonin2 receptors following chronic administration of imipramine. Neuropharmacol. 23, 1265–1269.Google Scholar
  108. Menkes, D. B., Aghajanian, G. K., and McCall, R. B. (1980) Chronic antidepressant treatment enhances alpha-adrenergic and serotonergic responses in the facial nucleus. Life Sci. 27, 45–55.PubMedGoogle Scholar
  109. Mitrius, J. C. and U’Prichard, D. C. (1985) Regulation of alpha2 adrenoceptors by nucleotides, ions and agonists: Comparison in cells of neural and nonneural origin. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 19, 57–73.PubMedGoogle Scholar
  110. Modigh, K. and Svensson, T. H. (1972) On the role of central nervous system catecholamines and 5-hydroxytryptamine in the nialamide-induced behavioral syndrome. Brit. J. Pharmacol. 46, 32–45.Google Scholar
  111. Mogilnicka, E. and Klimek, V. (1979) Mianserin, danitracen and amitriptyline withdrawal increases the behavioral responses of rats to L-5HTP. J. Pharm. Pharmacol. 31, 704–705.PubMedGoogle Scholar
  112. Mosko, S. S. and Jacobs, B. L. (1977) Electrophysiological evidence against negative neuronal feedback from the forebrain controlling midbrain raphé unit activity. Brain Res. 119, 291–303.PubMedGoogle Scholar
  113. Muller, P. and Seeman, P. (1978) Brain neurotransmitter receptors after long-term haloperidol: Dopamine, acetylcholine, serotonin, alpha-noradrenergic and naloxone receptors. Life Sci. 21, 1751–1758.Google Scholar
  114. Nagy, A. (1977) Blood and brain concentrations of imipramine, clorimipramine and their monomethylated metabolites after oral and intramuscular administration in rats. J. Pharm. Pharmacol. 29, 104–107.PubMedGoogle Scholar
  115. Nelson, D. L., Bourgoin, H. S., Glowinski, J., and Hamon, M. (1978) Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol. Pharmacol. 14, 983–995.PubMedGoogle Scholar
  116. Niemegeers, C. J. E., Colpaert, F. C., Leysen, J. E., Awouters, F., and Janssen, P. A. J. (1983) Mescaline-induced head-twitches in the rat: An in vivo method to evaluate serotonin S2 antagonists. Drug Develop. Res 3, 123–135.Google Scholar
  117. Noble, M. D., Brown, T. H., and Peacock, J. H. (1978) Regulation of acetylcholine receptor levels by a cholinergic agonist in mouse muscle cell cultures. Proc. Natl. Acad. Sci. 75, 3488–3492.PubMedGoogle Scholar
  118. Nygren, L. G., Fuxe, K., Jonsson, G., and Olson, L. (1974) Functional regeneration of 5-hydroxytryptamine nerve terminals in the rat spinal cord following 5,6-dihydroxytryptamine-induced degeneration. Brain Res. 78, 377–394.PubMedGoogle Scholar
  119. Offord, S. J. and Warwick, R. O. (1987) Differential effects of nialamide and clomipramine on serotonin efflux and autoreceptors. Pharmacol. Biochem. Behav. 26, 593–600.PubMedGoogle Scholar
  120. Ogren, S. O., Fuxe, K., Agnati, L. F., Gustafsson, J. A., Jonsson, G., and Holm, A. C. (1979) Re-evaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs. J. Neural. Trans. 46, 85–103.Google Scholar
  121. Olpe, H. R. and Schellenberg, A. (1981) The sensitivity of cortical neurons to serotonin: Effect of chronic treatment with antidepressants, serotonin uptake inhibitors and monoamine-oxidase-blocking drugs. J. Neural. Trans. 51, 233–244.Google Scholar
  122. Olpe, H. R., Schellenberg, A., and Jones, R. S. G. (1984) The sensitivity of hippocampal pyramidal neurons to serotonin in vitro: Effect of prolonged treatment with clorgyline or clomipramine. J. Neural Trans. 60, 265–271.Google Scholar
  123. Ordway, G. A., O’Donnell, J. M., and Frazer, A. (1987) Effects of clenbuterol on central beta-1 and beta-2 adrenergic of the rat. J. Pharmacol. Exp. Therap. 241, 187–195.Google Scholar
  124. Owen, F., Cross, A. J., Waddington, J. L., Poulter, M., Gamble, S. J., and Crow, T. J. (1980) Dopamine-mediated behavior and [3H]spiperone binding to striatal membranes in rats after nine months of haloperidol administration. Life Sci. 26, 55–59.PubMedGoogle Scholar
  125. Pazos, A., Cortes, R., and Palacios, J. M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 346, 231–249.PubMedGoogle Scholar
  126. Pazos, A., Hoyer, D., and Palacios, J. M. (1984) The binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of serotonin recognition site. Eur. J. Pharmacol. 106, 539–546.PubMedGoogle Scholar
  127. Pazos, A. and Palacios, J. M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 346, 205–230.PubMedGoogle Scholar
  128. Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem. 36, 220–226.PubMedGoogle Scholar
  129. Peroutka, S. J. (1986) Pharmacological differentation and characterization of 5-HT1A, 5-HT1B and 5-HT1C binding sites in rat frontal cortex. J. Neurochem. 47, 529–540.PubMedGoogle Scholar
  130. Peroutka, S. J., Lebovitz, R. M., and Snyder, S. H. (1981) Two distinct central serotonin receptors with different physiological functions. Science 212, 827–829.PubMedGoogle Scholar
  131. Peroutka, S. J. and Snyder, S. H. (1979) Multiple serotonin receptors: Differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol. Pharmacol. 16, 687–699.PubMedGoogle Scholar
  132. Peroutka, S. J. and Snyder, S. H. (1980) Long-term antidepressant treatment decreases spiroperidol-labelled serotonin receptor binding. Science 210, 88–90.PubMedGoogle Scholar
  133. Pranzatelli, M. R., Rubin, G., and Snodgrass, S. R. (1986) Serotonin-lesion myoclonus syndromes. I. Neurochemical profile and S-1 receptor binding. Brain Res. 364, 57–66.PubMedGoogle Scholar
  134. Pranzatelli, M. R. and Snodgrass, S. R. (1986) Serotonin-lesion myoclonic syndromes. II. Analysis of individual syndrome elements. Locomotor activity and behavioral correlations. Brain Res. 364, 67–76.PubMedGoogle Scholar
  135. Quik, M. and Azmitia, E. (1983) Selective destruction of the serotonergic fibers of the fornix-fimbria and cingulum bundle increases 5-HT1 but not 5-HT2 receptors in rat midbrain. Eur. J. Pharmacol. 90, 377–384.PubMedGoogle Scholar
  136. Quirion, R. and Richard, J. (1987) Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain. Synapse 1, 124–130.PubMedGoogle Scholar
  137. Quirion, R., Richard, J., and Dam, T. V. (1985) Evidence for the existence of serotonin type-2 receptors on cholinergic terminals in rat cortex. Brain Res. 333, 345–349.PubMedGoogle Scholar
  138. Raiteri, M., Maura, G., Bonanno, G., and Pittaluga, A. (1986) Differential pharmacology and function of two 5-HT1 receptors modulating transmitter release in rat cerebellum. J. Pharmacol. Exp. Therap. 237, 644–648.Google Scholar
  139. Roberts, M. H. T. and Straughan, D. W. (1967) Excitation and depression of cortical neurons by 5-hydroxytryptamine. J. Physiol. (London) 193, 269–294.Google Scholar
  140. Ross, S. B. and Renyi, A. L. (1967) Accumulation of tritiated 5-hydroxytryptamine in brain slices. Life Sci. 6, 1407–1415.PubMedGoogle Scholar
  141. Ross, S. B. and Renyi, A. L. (1969) Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 7, 270–277.PubMedGoogle Scholar
  142. Rowan, M. J. and Anwyl, R. (1985) The effect of prolonged treatment with tricyclic antidepressants on the actions of 5-hydroxytryptamine in the hippocampal slice of the rat. Neuropharmaeol. 24, 131–137.Google Scholar
  143. Rowland, N. S., Antelman, S., and Kocan, D. (1982) Differences among “serotonergic” anorectics in a cross-tolerance paradigm: Do they all act on serotonin systems. Eur. J. Pharmacol. 81, 57–66.PubMedGoogle Scholar
  144. Rowland, N., Carlton, J., Bartness, T., and Smith, G. (1983) Effect of chronic administration of fenfluramine and quipazine on body weight gain after ovariectomy and on brain and serotonin receptor binding. Behav. Neurosci. 97, 502–505.PubMedGoogle Scholar
  145. Samanin, R., Mennini, T., Ferraris, A., Bendotti, C., and Borsini, F. (1980) Hyper- and hyposensitivity of central serotonin receptors: [3H]serotonin binding and functional studies in the rat. Brain Res. 189, 449–457.PubMedGoogle Scholar
  146. Sanders-Bush, E., Breeding, M., and Roznoski, M. (1987) 5HT2 binding sites after mianserin: Comparison of loss of sites and brain levels of drug. Eur. J. Pharmacol. 133, 199–204.PubMedGoogle Scholar
  147. Savage, D. D., Frazer, A., and Mendels, J. (1979) Differential effects of monoamine oxidase inhibitors and serotonin uptake inhibitors on 3H-serotonin receptor binding in rat brain. Eur. J. Pluirmacol. 58, 87–88.Google Scholar
  148. Savage, D. D., Mendels, J., and Frazer, A. (1980a) Mcnoamine oxidase inhibitors and serotonin uptake inhibitors: Differential effects on [3H]-serotonin binding sites in rat brain. J. Pharmacol. Exp. Therap. 212, 259–263.Google Scholar
  149. Savage, D. D., Mendels, J., and Frazer, A. (1980b) Decrease in [3H]-serotonin binding in rat brain produced by the repeated administration of either monoamine oxidase inhibitors or centrally acting serotonin agonists. Neuropharmaeol. 19, 1063–1070.Google Scholar
  150. Schwartz, R., Bennett, J. P., and Coyle, J. T. (1977) Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: Correlations with Huntington’s Disease. J. Neurochem. 28, 867–869.Google Scholar
  151. Scott, F. T. and Crews, J. A. (1986) Down-regulation of serotonin2, but not of beta-adrenergic receptors during chronic treatment with amitriptyline is independent of stimulation of serotonin2 and beta-adrenergic receptors. Neuropharmacol. 25, 1301–1306.Google Scholar
  152. Scuvee-Moreau, J. and Dresse, A. R. (1979) Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphé neurons of the rat. Eur. J. Pharmacol. 57, 219–225.PubMedGoogle Scholar
  153. Seeman, P., Westman, K., Cosina, D., and Warsh, J. J. (1980) Serotonin receptors in hippocampus and frontal cortex. Eur. J. Pharmacol. 66,179–191.PubMedGoogle Scholar
  154. Segawa, T., Mizuta, T., and Nomura, Y. (1979) Modifications of central 5-hydroxytryptamine binding sites in synaptic membranes from rat brain after long-term administraion of tricyclic antidepressants. Eur. J. Pharmacol. 58, 75–83.PubMedGoogle Scholar
  155. Sharpless, S. K. (1969) Isolated and deafferentiated neurons: Disuse supersensitivity, in Basic Mechanisms of the Epilepsies (Jasper, H., Ward, A., and Pope, A., eds.) Little, Brown, Boston, Mass.Google Scholar
  156. Sharpless, S. K. (1975) Supersensitivity-like phenomena in the central nervous system. Fed. Proc. 34, 1990–1997.PubMedGoogle Scholar
  157. Sheard, M. H., Zolovick, A., and Aghajanian, G. K. (1972) Raphé neurons: Effect of tricyclic antidepressant drugs. Brain Res. 43, 690–694.PubMedGoogle Scholar
  158. Sills, M. A., Lucki, I., and Frazer, A. (1985) Development of selective tolerance to the serotonin behavioral syndrome and suppression of locomotor activity after repeated administration of either 5-MeODMT or m-CPP. Life Sci. 36, 2463–2469.PubMedGoogle Scholar
  159. Sills, M. A., Wolfe, B. B., and Frazer, A. (1984a) Multiple states of the 5-hydroxytryptamine1 receptor as indicated by the effects of GTP on [3H]5-hydroxytryptamine binding in rat frontal cortex. Mol. Pharmacol. 26, 10–18.PubMedGoogle Scholar
  160. Sills, M. A., Wolfe, B. B., and Frazer, A. (1984b) Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J. Pharmacol Exp. Therap. 231, 480–487.Google Scholar
  161. Skolnick, P., Stalvey, L. P., Daley, J. W., Hoyler, E., and Davis, J. N. (1978) Binding of alpha- and beta-adrenergic ligands to cerebral cortical membranes: Effect of 6-hydroxydopamine treatment and relationship to the responsiveness of cyclic AMP-generating systems in two rat strains. Eur. J. Pharmacol. 47, 201–210.PubMedGoogle Scholar
  162. Slater, P. and Patel, S., (1983) Autoradioraphic distribution of serotonin2 receptors in rat brain. Eur. J. Pharmacol. 92, 297–298.PubMedGoogle Scholar
  163. Sporn, J. R., Wolfe, B. B., Harden, T. K. and Molinoff, P. B. (1977) Supersensitivity in rat cerebral cortex: Pre- and Postsynaptic effects of 6-hydroxydopamine at noradrenergic synapses. Mol Pharmacol. 13, 1170–1180.PubMedGoogle Scholar
  164. Sprouse, J. S. and Aghajanian, G. K. (1987) Electrophysiological responses of serotonergic dorsal Raphé neurons to 5-HT1A and 5-HT1B agonists. Synapse, 1, 3–9.PubMedGoogle Scholar
  165. Sprouse, J. S. and Aghajanian, G. K. (1986) (-)-Propranolol blocks the inhibition of serotonergic dorsal Raphé cell firing by 5-HT1A selective agonists. Eur. J. Pharmacol. 128, 295–298.PubMedGoogle Scholar
  166. Stewart, R. M., Growdon, J. H., Cancian, D., and Baldessarini, R. J. (1976a) Myoclonus after 5-hydroxytryptophan in rats with lesions of indoleamine neurons in the central nervous system. Neurology 26, 690–692.PubMedGoogle Scholar
  167. Stewart, R. M., Growdon, J. H., Cancian, D., and Baldessarini, R. J. (1976b) 5-hydroxytryptophan-induced myoclonus: Increased sensitivity to serotonin after intracranial 5,7-dihydroxytryptamine in the adult rat. Neuropharmacol. 15, 449–455.Google Scholar
  168. Stolz, J. F., Marsden, C. A., and Middlemiss, D. N. (1983) Effect of chronic antidepressant treatment and subsequent withdrawal on [3H]-5-hydroxytryptamine and [3H]-spiperone binding in rat frontal cortex and serotonin receptor mediated behavior. Psychopharmacol. 80, 150–155.Google Scholar
  169. Su, Y. F., Harden, T. K., and Perkin, J. P. (1980) Catecholamine-specific desensitization of adenylate cyclase. Evidence for a multistep process. J. Biol. Chem. 255, 7410–7419.PubMedGoogle Scholar
  170. Tang, S.W., Seeman, P., and Kwan, S. (1981) Differential effect of chronic desipramine and amitriptyline treatment on rat brain adrenergic and serotonergic receptors. Psych. Res. 4, 129–138.Google Scholar
  171. Todd, R. D. and Ciaranello, R. D. (1987) Multiple high affinity [3H]serotonin binding sites in human frontal cortex. Brain Res. 400, 247–258.PubMedGoogle Scholar
  172. Trendelenburg, U. (1963) Supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 15, 225–276.PubMedGoogle Scholar
  173. Trendelenburg, U. (1966) Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 18, 629–640.PubMedGoogle Scholar
  174. Tricklebank, M. D., Forler, C., and Fozard, J. R. (1985) The involvement of subtypes of the 5-HT-1 receptor and of catecholaminergic systems in the behavioral responses to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur. J. Pharmacol. 106, 271–282.Google Scholar
  175. Trulson, M. E. and Crisp, T. (1983) Tolerance develops to LSD while the drug is exerting its maximal behavioral effects: Implications for the neural bases of tolerance. Eur. J. Pharmacol. 96, 317–320.PubMedGoogle Scholar
  176. Trulson, M. E., Eubanks, E. E., and Jacobs, B. L. (1976) Behavioral evidence for supersensitivity following destruction of central serotonergic nerve terminals by 5,7-dihydroxytryptamine. J. Pharmacol. Exp. Therap. 198, 23–32.Google Scholar
  177. Trulson, M. E. and Jacobs, B. L. (1976) Behavioral evidence for the rapid release of CNS serotonin by PCA and fenfluramine. Eur. J. Pharmacol. 36, 149–154.PubMedGoogle Scholar
  178. Trulson, M. E. and Jacobs, B. L. (1977) Usefulness of an animal behavioral model in studying the duration of action of LSD and the onset and duration of tolerance to LSD in the cat. Brain Res. 132, 315–326.PubMedGoogle Scholar
  179. Trulson, M. E. and Jacobs, B. L. (1979a) Alterations of serotonin and LSD receptor binding following repeated administration of LSD. Life Sci. 24, 2053–2062.PubMedGoogle Scholar
  180. Trulson, M. E. and Jacobs, B. L. (1979b) Dissociations between the effects of LSD on behavior and Raphé unit activity in freely moving cats. Science 205, 515–518.PubMedGoogle Scholar
  181. U’Prichard, D. C., Bechtel, W. D., Rouot, B. M., and Snyder, S. H. (1979) Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Mol. Pharmacol. 16, 47–60.PubMedGoogle Scholar
  182. U’Prichard, D. C., Reisine, T. D., Mason, S. T., Fibiger, H. C., and Yamamura, H. I. (1980) Modulation of rat brain alpha and beta-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res. 187, 143–154.PubMedGoogle Scholar
  183. VanderMaelen, C. P. and Wilderman, R. C. (1984) lontophoretic and systemic administration of the non-benzodiazepine anxiolytic drug buspirone causes inhibition of serotonergic dorsal Raphé neurons in rats. Fed. Proc. 43, 947.Google Scholar
  184. Verge, D., Davel, G., Marcinkiewicz, M., Patey, A., El Mestikawy, S., Gozlan, H., and Hamon, M. (1986) Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydrox-ytryptamine treated rats. J. Neurosci. 6, 3474–3482.PubMedGoogle Scholar
  185. Vetulani, J., Bednarczyk, B., Reichenberg, K., and Rokosz, A. (1980) Head twitches induced by LSD and quipazine: Similarities and differences. Neuropharmacol. 19, 155–158.Google Scholar
  186. Vetulani, J., Lebrecht, U., and Pilc, A. (1981) Enhancement of responsiveness of the central serotonergic system and serotonin-2 receptor density in rat frontal cortex by electroconvulsive treatment. Eur. J. Pharmacol. 76, 81–85.PubMedGoogle Scholar
  187. Vetulani, J., Szpak, J., and Pilc, A. (1983) Spaced electroconvulsive treatment: Effects on responses associated with alpha2- and 5-HT2-receptors. J. Pharm. Pharmacol. 35, 326–328.PubMedGoogle Scholar
  188. Vos, P., Davenport, P. A., Artymyshyn, R. P., Frazer, A., and Wolfe, B. B. (1987) Selective regulation of beta-2 adrenergic receptors by the chronic administration of the lipophilic beta adrenergic receptor agonist clenbuterol: An autoradiographic study. J. Pharmacol. Exp. Therap. 242, 707–712.Google Scholar
  189. Wang, R. Y., de Montigny, C., Gold, B. I., Roth, R. H., and Aghajanian, G. K. (1979) Denervation supersensitivity to serotonin in rat forebrain: Single cell studies. Brain Res. 178, 479–497.PubMedGoogle Scholar
  190. Weissmann-Nanopoulos, D., Mach, E., Magre, J., Demassey, Y., and Pujol, J. F. (1985) Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the Raphé dorsalis and Raphé centralis nuclei of the rat brain. Neurochem. Int. 7, 1061–1072.PubMedGoogle Scholar
  191. Wirz-Justice, A., Krauchi, K., Lichtsteiner, M., and Feer, H. (1978) Is it possible to modify serotonin receptor sensitivity? Life Sci. 23, 1249–1254.PubMedGoogle Scholar
  192. Wolfe, B. B., Harden, T. K., Sporn, J. R., and Molinoff, P. B. (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J. Pharmacol Exp. Therap. 207, 446–457.Google Scholar
  193. Wong, D. T. and Bymaster, F. P. (1981) Subsensitivity of serotonin receptors after long-term treatment of rats with fluoxetine. Res. Commun. Chem. Path. Pharmacol. 32, 41–51.Google Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Alan Frazer
  • Steve J. Offord
  • Irwin Lucki

There are no affiliations available

Personalised recommendations