Advertisement

Regulation of Neuropeptide Gene Expression by Steroid Hormones

  • Richard E. Harlan
Chapter
Part of the Molecular Neurobiology · 1988 · book series (MN)

Abstract

Steroid hormones modify several brain functions, at least in part by altering expression of particular genes. Of interest are those genes that are involved in cell-cell communication in the brain, for instance neuropeptide genes and genes that code for enzymes involved in synthesis of neurotransmitters. Steroid regulation of mRNA levels for several genes has been reported, including the genes coding for the neuropeptides vasopressin, corticotropin releasing factor, luteinizing hormone-releasing factor, pro-opiomelanocortin, somatostatin, preproenkphalin, and the enzyme tyrosine hydroxylase. Steroid control of releasing factor genes is consistent with classical neuroendocrine concepts of negative feedback. Steroid-induced plasticity of gene expression is sometimes in evidence, with the presence or absence of a particular steroid inducing expression of a neuropeptide gene in neurons that under other conditions do not express the gene.

As a means of gaining some insight into the mechanism of action of steroid hormones, several groups have determined some of the neuropeptide profiles of neurons that contain receptors for steroid hormones. Marked heterogeneity is found, in that often only a subpopulation of phenotypically-similar neurons, even within a single brain area, contains receptors for a given steroid.

Index Entries

Steroid hormones neuropeptide genes gene expression releasing factor genes steroid receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman J. P., Mason A. J., Hayflick J. J., and Seeburg P. H. (1986) Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat. Proc. Natl. Acad. Sci. LISA 83, 179–183.Google Scholar
  2. Agnati L. F., Fuze K., Yu Z. -Y., Harfstrand A., Okret S., Wikstrom A.-C., Goldstein M., Zoli M., Vale W., and Gustafsson J.-A. (1988a) Morphometric analysis of the distribution of corticotrophin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the mediel basal hypothalamic of the female rat. J. Neurosci. Res. 19, 412–419.Google Scholar
  3. Akesson T. R. and Micevych P. E. (1988a) Estradiol concentration by substance P immunoreactive neurons in the medial basal hypothalamus of the female rat. J. Neurosci. Res. 19, 412–419.PubMedGoogle Scholar
  4. Akesson T. R. and Micevych P. E. (1988b) Absence of estrogen-concentration by CCK-immunoreactive neurons in the hypothalamus of the female rat. J. Neurobiol. 19, 3–16.PubMedGoogle Scholar
  5. Bäckström T. (1983) Premenstrual tension syndrome. Progesterone and Progestins, Bardin C. W., Milgröm E., and Mauvais-Jarvis P. ( 1983 ) Raven, New York, pp. 203–217.Google Scholar
  6. Baldino Jr. F., O’Kane T. M., McElligott B., Wolfson, B., Rogers W. T., and Schwaber J. J. (1987) Coordinate hormonal and synaptic regulation of vasopressin mRNA. Anat. Rec. 218, 13A.Google Scholar
  7. Bhanot R. and Wilkinson M. (1984) The inhibitory effect of opiates on gonadotrophin secretion is dependent upon gonadal steroids. J. Endocrinol. 102, 133–144.PubMedGoogle Scholar
  8. Blum M., McEwen B. S. and Roberts J. L. (1987) Transcriptional analysis of tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic neurons of the rat arcuate nucleus after estrogen treatment. J. Biol. Chem. 262, 817–821.PubMedGoogle Scholar
  9. Brock M. L. and Shapiro D. J. (1983) Estrogen regulates the absolute rate of transcription of the Xenopus laevis vitellogenin genes. J. Biol. Chem. 258, 5449–5455.PubMedGoogle Scholar
  10. Brown et al. (Abst. Soc. Neurosci.,1988) found that estrogen increased PPT mRNA levels in the hypothalamus, and decreased PPT mRNA levels in the pituitary.Google Scholar
  11. Carrer H. A. and Aoki A. (1982) Ultrastructural changes in the hypothalamic ventromedial nucleus of ovariectomized rats after estrogen treatment. Brain Res. 240, 221–233.PubMedGoogle Scholar
  12. Chavkin C., Shoemaker W. J., McGinty J. F., Bayon A. and Bloom F. E. (1985) Characterization of the prodynorphin and proenkephalin neuropeptide systems in rat hippocampus. J. Neurosci. 5, 808–816.PubMedGoogle Scholar
  13. Chao H. M., Blum M., Roberts J. L., and McEwen B. S. (1987) Glucocorticoid regulation of preproenkephalin mRNA level in rat striatum. Abstr. Sor Neurosci. 13, 1086.Google Scholar
  14. Chikaraishi D. M. (1979) Complexity of cytoplasmic polyadenylated and nonpolyadenylated rat brain ribonucleic acids. Biochem. 18, 3249–3256.Google Scholar
  15. Cohen R. S., Chung S. K. and Pfaff D. W. (1984) Alteration by estrogen of the nucleoli in nerve cells of the rat hypothalamus. Cell Tiss. Res. 235, 485–489.Google Scholar
  16. Cohen R. S. and Pfaff D. W. (1981) Ultrastructure of neurons in the ventromedial nucleus of the hypothalamus in ovariectomized rats with or without estrogen treatment. Cell Tiss. Res. 217, 451–470.Google Scholar
  17. Davis L. G. Arentzen R., Reid J. M., Manning R. W., Wolfson B., Lawrence K. L., and Baldino Jr., F. (1986) Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat. Proc. Natl. Acad. Sci. USA 83, 1145–1149.PubMedGoogle Scholar
  18. Doman W. A., Malsbury C. W., and Penney R. B. (1987) Facilitation of lordosis by injection of substance P into the midbrain central gray. Neuroendocrinol. 45, 498–506.Google Scholar
  19. Drouin J. and Goodman H. M. (1980) Most of the coding region of rat ACTH/p-LPH precursor gene lacks intervening sequences. Nature 288, 610–612.PubMedGoogle Scholar
  20. Eipper B. A. and Mains R. E. (1978) Analysis of the common precursor to corticotropin and endorphin. J. Biol. Chem. 253, 5732–5744.PubMedGoogle Scholar
  21. Fink G. (1979) Feedback actions of target hormones on hypothalamus and pituitary with special reference to gonadal steroids. Ann. Rev. Physiol. 41, 571–585.Google Scholar
  22. Flügge G., Oertel W. H. and Wuttke W. (1986) Evidence for estrogen-receptive GABAergic neurons in the preoptic/anterior hypothalamic area of the rat brain. Neuroendocrinol. 43, 1–5.Google Scholar
  23. Fox S. R., Shivers B. D., Harlan R. E. and Pfaff D. W. (1986a) Gonadotrophs and p-endorphin-immunoreactive neurons contain progesterone receptors, but luteinizing hormone-releasing hormone-immunoreactive neurons do not. Abst. Soc. Study Reprod.Google Scholar
  24. Fox S. R., Shivers B. D., Harlan R. E., and Pfaff D. W. (1987b) Tuberoinfundibular dopaminergic neurons are targets for progesterone action. Abst. Endocrine Soc.Google Scholar
  25. Fremeau Jr. R. T., Lundblad J. R., Pritchett D. B., Wilcox J. N., and Roberts J. L. (1986) Regulation of pro-opiomelanocortin gene transcription in individual cell nuclei. Science 234, 1265–1269.PubMedGoogle Scholar
  26. Fuxe K., Wikström A-C., Okret S., Agnati L. F., Härfstrand A., Yu Z-Y., Gra-holm L., Zolin M., Vale W., and Gustafsson J. A. (1985) Mapping of glucocorticoid receptor immunoreactive neurons it the rat tel-and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology 117, 1803–1812.PubMedGoogle Scholar
  27. Gabriel S. M., Simpkins J. W., and Kalra S. P. (1983) Modulation of endogenousopioid influence on luteinizing hormone secretion by progesterone and estrogen. Endocrinology 113, 1806–1811.PubMedGoogle Scholar
  28. Gall C., Nicholas B., Karten H. J., and Chang K.-J. (1981) Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus. J. Comp. Neurol. 198, 335–350.PubMedGoogle Scholar
  29. Garcia M. M. and Harlan R. E. (1987) Post-mortem stability of preproenkephalin mRNA in rat brain. Abst. Soc. Neurosci 13, 1087.Google Scholar
  30. Gorski R. A. (1984) Critical role for the medial preoptic area in the sexual differentiation of the brain. Prog. Brain Res. 61, 129–146.PubMedGoogle Scholar
  31. Harfstrand A., Fuxe K., Cintra A., Agnati L. F., Zini I., Wikström A. -C., Okret S., Yu Z. -Y., Goldstein M., Steinbusch H., Verhostad A., and Gustafsson J. -A. (1986) Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc. Natl. Acad. Sci. USA 83, 9779–9783.PubMedGoogle Scholar
  32. Harlan R. E., Gordon J. H., and Gorski R. A. (1979) Sexual differentiation of the brain: Implications for neuroscience. Rev. Neurosci. 4, 31–71.Google Scholar
  33. Harlan R. E. and Garcia M. M. (1987) Excess corticosterone increases preproenkephalin mRNA levels in the rat hippocampus. Abst. Soc. Neurosci. 13, 584.Google Scholar
  34. Harlan R. E., Shivers B. D., Romano G. J., Howells R. D., and Pfaff D. W. (1987a) Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J. Comp. Neurol. 258, 159–184.PubMedGoogle Scholar
  35. Harlan R. E., Shivers B. D., Garda M., and Krause J. E. (1987b) Cellular localization of preprotachykinin mRNA in rat brain. Neuroscience 22 (Suppl.) 5306.Google Scholar
  36. Harlan R. E., Shivers B. D., Garda M., and Krause J. E. (1987c) Localization of preprotachykinin mRNA in rat brain by in situ hybridization. Anatomici Rec. 218, 57a.Google Scholar
  37. Henkin R. I. (1970) The effects of corticosteroids and ACTH on sensory systems. Progress in Brain Res. 32, 270–294.Google Scholar
  38. Howells R. D., Kilpatrick D. L., Bhatt R., Monahan J. J., Poonian M. and Udenfriend S. (1984) Molecular cloning and sequence determination of rat preproenkephalin cDNA: Sensitive probe for studying transcriptional. changes in rat tissues. Proc Natl. Acad. Sci. USA 81, 7651–7655.PubMedGoogle Scholar
  39. Jackson G. L. (1972) Effect of actinomycin D on estrogen-induced release of luteinizing hormone in ovariectomized rats. Endocrinology 91, 1284–1287.PubMedGoogle Scholar
  40. Jackson G. L. (1973) Time interval between injection of estradiol benzoate and LH release in the rat and effect of actinomycin D or cycloheximide. Endocrinology 93, 887–892.PubMedGoogle Scholar
  41. Jingami H., Matsukura S., Numa S., and Imura H. (1985) Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/ß-lipotropin precursor mRNA in the pituitary in rats. Endocrinology 117, 1314–1320.PubMedGoogle Scholar
  42. Jirikowski G. F., Merchenthaler I., Rieger G. E., and Stumpf W. E. (1986) Estradiol target sites i mmunoreactive for ß-endorphin in the arcuate nucleus of rat and mouse hypothalamus. Neurosci. Lett. 65, 121–126.PubMedGoogle Scholar
  43. Jones K. J., Pfaff D. W., and McEwen B. S. (1985a) Early estrogen-induced nuclear changes in rat hypothalamic ventromedial neurons: An ultra-structural and morphometric analysis. J. Comp. Neurol. 239, 255–266.PubMedGoogle Scholar
  44. Jones K. J., McEwenB. S., and Pfaff D. W. (1985b) Effects of estradiol (E2) on protein synthesis in vitro, in the ventromedial hypothalamic nucleus (V MN) and preoptic area (POA) of the female rat. Abst. Soc. Neurosci. 11, 723.Google Scholar
  45. Jones K. J., Chikaraishi D. M., Harrington C. A., Mc-Ewen B. S., and Pfaff D. W. (1986) Estradiol (E2) induced changes in rRNA in rat hypothalamic neurons detected by in situ hybridization. Mol. Brain Res. 1, 145–152.Google Scholar
  46. Koller K. J., Wolff R. S., Warden M. K., and Zoeller R. T. (1987) Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the para-ventricular nucleus. Proc. Natl. Acad. Sci. USA 84, 7329–7333.PubMedGoogle Scholar
  47. Kovacs K. and Mezey E. (1987) Dexamethasone inhibits corticotropin-releasing factor gene expression in the rat paraventricular nucleus. Neuroendocrinol. 46, 365–368.Google Scholar
  48. Krause J. E., Chirgwin J. M., Carter M. S., Xu Z. S., and Hershey A. D. (1987) Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc. Natl. Acad. Sci. USA 84, 881–885.PubMedGoogle Scholar
  49. Lawson G. M., Knoll B. J., March C. J., Woo S. L., Tsai M. J., and O’Malley B. W. (1982) Definition of 5′ and 3′ structural boundaries of the chromatin domain containing the ovalbumin multigene family. J. Biol. Chem. 257, 1501–1507.PubMedGoogle Scholar
  50. Lechan R. M., Ivon P. V., Jackson M. D., Wolf H., Cooperman S., Mandel G., and Goodman R. H. (1986) Thyrotropin-releasing hormone precursor characterization in rat brain. Science 231, 159, 160.Google Scholar
  51. Lightman S. L. and Young III, W. S. (1987) Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal. Nature 328, 643–647.PubMedGoogle Scholar
  52. Ljungdahl A., Hokfelt T., and Nilsson G. (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat-I. Cell bodies and nerve terminals. Neuroscience 3, 861–943.PubMedGoogle Scholar
  53. McEwen B. S., Davis P. G., Parsons B., and Pfaff D. W. (1979) The brain as a target for steroid hormone action. Ann. Rev. Neurosci. 2, 65–112.PubMedGoogle Scholar
  54. McEwen B., Brinton R., Harrelson A., and Rostene W. (1986) Modulatory interactions between steroid hormones, neurotransmitters and neuropeptides in hippocampus. Hypothalamic Dysfunction in Neuropsychiatric Disorders, Advances in Biochem. Psychopharm. Nerozzi D., Goodwin F. K., and Costa E., eds., Raven, 43, 87–102.Google Scholar
  55. McGinty J. F., Van der Kooy D., and Bloom F. E. (1984) The distribution and morphology of opioid peptide immunoreactive neurons in the cerebral cortex of rats. J. Neurosci. 4, 1104–1117.PubMedGoogle Scholar
  56. Meisel R. L. and Pfaff D. W. (1984) RNA and protein synthesis inhibitors: Effects on sexual behavior in female rats. Brain Res. Bull. 12, 187–193.PubMedGoogle Scholar
  57. Meltzer H., Lowy M. T., and Koenig J. I. (1987) The hypothalamic-pituitary-adrenal axis in depression. ed., Hypothalamic Dysfunction in Neuropsychiatric Disorders, Advances in Biochem. Psychopharm. Nerozzi D., Goodwin F. K., and Costa E., eds., Raven, 43,165–182.Google Scholar
  58. Milbrandt J. (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238, 797–799.PubMedGoogle Scholar
  59. Mobbs C. V., Harlan R. E., Burrous M. R., and Pfaff D. W. (1988) An estradiol-induced protein synthesized in the ventral medial hypothalamus and transported to the midbrain central gray. J. Neuro-sci. 8, 113–118.Google Scholar
  60. Morrell J. I., McGinty J., and Pfaff D. W. (1985) A subset of beta endorphin-or dynorphin-containing neurons in the medial basal hypothalamus accumulates estradiol. Neuroendocrinology 41, 417–426.PubMedGoogle Scholar
  61. Morrell J. I., Krieger M. S., and Pfaff D. W. (1986) Quantitative autoradiographic analysis of estradiol retention by cells in the preoptic area, hypothalamus and amygdala. Exp. Brain Res. 62, 343–354.PubMedGoogle Scholar
  62. Nance D. M. (1976) Sex differences in the hypothalamic regulation of feeding behavior in the rat. Adv. Psychobiol. 3, 75–123.PubMedGoogle Scholar
  63. Nawa H., Hirose T., Takashima H., Inayama S., and Nakanishi A. (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature 306, 32–36.PubMedGoogle Scholar
  64. Neill J. D. (1974) Prolactin: Its secretion and control. Handbook of Physiology-Endocrinology, vol. IV, Knobil E. and Sawyer W. H., eds., Am. Physiological Soc. Bethesda, pp. 469–488.Google Scholar
  65. Olson G. A., Olson R. D., Kastin A. J., and Coy D. H. (1981) Endogenous opiates: 1980. Peptides 2, 349–369.PubMedGoogle Scholar
  66. Pfaff D. E. (1980) Estrogens and Brain Function. Springer-Verlag, New York.Google Scholar
  67. Reisine T., Affolter H.-U., Rougon G., and Barbet J. (1986) New insights into the molecular mechanisms of stress. Trends in Neurosci. 9, 574–579.Google Scholar
  68. Rhodes C. H., Morrell J. I., and Pfaff D. W. (1982) Estrogen-concentrating neurophysin-containing hypothalamic magnocellular neurons in the vasopressin-deficient (Brattleboro) rat: A study combining steroid autoradiography and immunocytochemistry. J. Neurosci. 2, 1718–1724.PubMedGoogle Scholar
  69. Rodriguez-Sierra J. F., Heydorn W. E., Creed G. J., and Jacobowitz D. M. (1986) Specific proteins of the arcuate-median eminence affected by estradiol in prepubertal female rats. Abst. Soc. Neurosci. 12, 12–15.Google Scholar
  70. Rodriguez-Sierra J. F., Heydorn W. E., Creed G. J., and Jacobowitz D. M. (1986) Specific proteins of the arcuate-median eminence affected by estradiol in prepubertal female rats. Abst. Soc. Neurosci. 12, 12–15.Google Scholar
  71. Romano G. J., Bonner T. I., and Pfaff D. W. (1987) Substance P gene expression in ventromedial hypothalamic neurons of estrogen-treated and control rats analyzed by in situ hybridization. Abst. Soc. Neurosci. 13, 584.Google Scholar
  72. Rose R. M., Jenkins C. D., Hurst M., Herd J. A., and Hall R. P. (1982) Endocrine activity in air traffic controllers at work. II. Biological, psychological and work correlates. Psychoneuroendocrinol. 7, 113–123.Google Scholar
  73. Rosen A., Douglass J., and Herbert E. (1984) Isolation and characterization of the rat proenkephalin gene. J. Bio. Chem. 259, 14309–14313.Google Scholar
  74. Rothfeld J. M., Hejtmancik J. F., Conn P. M., and Pfaff D. W. (1987a) LHRH messenger RNA in neurons in the intact and castrate male rat forebrain, studied by in situ hybridization. Exp. Brain Res. 67, 113–118.PubMedGoogle Scholar
  75. Rothfeld J. M., Hejtmancik J. F., and Pfaff D. W. (1987b) Quantitation of LHRH mRNA within the female rat forebrain following estrogen treatment. Anat. Rec. 218, 117a.Google Scholar
  76. Sanders S. A. and Reinisch J. M. (1985) Behavioral effects on humans of progesterone-related compounds during development and in the adult. Ganten D. and Pfaff D., eds., Current Topics in Neuroendocrinology, vol. 5, Springer-Verlag, Heidelberg, pp. 175–205.Google Scholar
  77. Sapolsky R. M., Krey L. C., and McEwen B. S. (1986) The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Rev. 7, 284–301.Google Scholar
  78. Sar M. (1984) Estradiol is concentrated in tyrosine hydroxylase containing neurons of the hypothalamus. Science 223, 938–940.PubMedGoogle Scholar
  79. Sar M. and Stumpf W. E. (1980) Simultaneous local-ization of [3H] estradiol and neurophysin I or arginine vasopressin in hypothaolamic neurons demonstrated by a combined technique of dry-mount autoradiography and immunohistochemistry. Neurosci. Lett. 17, 179–184.PubMedGoogle Scholar
  80. Sar M. and Stumpf W. E. (1981) Central noradrenergic neurons concentrate 3H-oestradiol. Nature 289, 500–502.PubMedGoogle Scholar
  81. Sar M. and Stumpf W. E. (1983) Simultaneous localization of steroid hormones and neuropeptides in the brain by combined autoradiography and immunocytochemistry. Methods. Enzymol. 103, 631–638.PubMedGoogle Scholar
  82. Schachter B. S., Pfaff D. W., and Shivers B. D. (1986) Quantitative in situ hybridization for studying estrogen’s effect on hypothalamic endorphin gene expression. Abstr. Soc. Neurosci. 13, 2.Google Scholar
  83. Scouten C. W., Heydorn W. E., Creed G. J., Malsbury C. W., and Jacobowitz D. M. (1985) Proteins regulated by gonadal steroids in the medial preoptic and ventromedial hypothalamic nuclei of male and female rats. Neuroendocrinol. 41, 237–245.Google Scholar
  84. Segerson T. P., Kauer J., Wolfe H. C., Mobtaker H., Wu P., Jackson I. M. D., and Lechan R. M. (1987) Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238, 78–80.PubMedGoogle Scholar
  85. Sherwood N. M., Chiappa S. A., Sarkar D. K., and Fink G. (1980) Gonadotropin-releasing hormone (GnRH) in pituitary stalk blood from proestrous rats: Effects of anesthetics and relationship between stored and released GnRH and luteinizing hormone. Endocrinol. 107, 1410–1417.Google Scholar
  86. Shivers B. D., Harlan R. E., Morrell J. I., and Pfaff D. W. (1983a) Immunocytochemical localization of luteinizing hormone-releasing hormone in male and female rat brains. Quantitative studies on the effect of gonadal steroids. Neuroendocrinology 36, 1–12.PubMedGoogle Scholar
  87. Shivers B. D., Harlan R. E., Morrell J. I., and Pfaff D. W. (1983b) Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurons. Nature 304, 345–347.PubMedGoogle Scholar
  88. Shivers B. D., Harlan R. E., and Pfaff D. W. (1983c) Reproduction: The central nervous system role of luteinizing hormone releasing hormone. Brain Peptides, Kreiger D. T., Brownstein M. J., and Martin J. B., eds., Wiley and Sons, New York, pp. 389–412.Google Scholar
  89. Shivers B. D., Harlan R. E., and Pfaff D. W. (1984) Hypothalamic immunoreactive prolactin neurons are targets for estrogenic action. Abstr. Soc. Neuro-sci. 10, 156.Google Scholar
  90. Shivers B. D., Harlan R. E., Romano G. J., Howells R. D., and Pfaff D. W. (1986) Cellular localization of proenkephalin mRNA in rat brain: Gene expression in the caudate-putamen and cerebellar cortex. Proc. Natl. Acad. Sci. USA 83, 6221–6225.PubMedGoogle Scholar
  91. Sirinathsinghji D. J. S., Whittington P. E., Audsley A., and Fraser H. M. (1983)ß-Endorphin regulates lordosis in female rats by modulating LHRH release. Nature 301, 62–64.Google Scholar
  92. Stengaard-Pedersen K., Fredens K., and Larsson L.–I. (1983) Comparative localization of enkephalin and cholecystokinin immunoreactivities and heavy metals in the hippocampus. Brain Res. 273, 81–86.PubMedGoogle Scholar
  93. Swanson L. W. and Sawchenko P. E. (1983) Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Ann. Rev. Neurosci. 6, 275–325.Google Scholar
  94. Swanson L. W., Sawchenko P. E., and Lind R. W. (1986) Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: Implications for the stress response. Prog. Brain Res. 68, 169–190.PubMedGoogle Scholar
  95. Tecott L. H., Barchas J. D., and Eberwine J. H. (1987) Reverse transcription of messenger RNA in fixed tissue sections. Abstr. Soc. Neurosci. 13, 585.Google Scholar
  96. Thompson C. C., Weinberger C., Lebo R., and Evans R. M. (1987) Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237, 1610–1614.PubMedGoogle Scholar
  97. Uht et al. (1988) Reported that essentially all parventricular neurons containing CRF or vasopressin also contained glucocorticoid receptor immunoreactivity. J. Neurosci. Res 19, 405–411.PubMedGoogle Scholar
  98. Van Hartesveldt C. and Joyce J. N. (1986) Effects of estrogen on the basal ganglia. Neurosci. and Biobehay. Rev. 10, 1–14.Google Scholar
  99. Van Ness J., Maxwell I. H., and Hahn W. E. (1979) Complex population of nonpolyadenylated messenger RNA in mouse brain. Cell 18, 1341–1349.PubMedGoogle Scholar
  100. Wang P. S. and Porter J. C. (1986) Hormonal modulation of the quantity and in situ activity of tyrosine hydroxylase in neurites of the median eminence. Proc. Natl. Acad. Sci. USA 83, 9804–9806.PubMedGoogle Scholar
  101. Werner H., Koch Y., Baldino Jr. F., and Gozes I. (1987) Steroid regulation of somatostatin mRNA in the rat hypothalamus. Abstr. Soc. Neurosci. 13, 1286.Google Scholar
  102. Wilcox J. N. and Roberts J. L. (1985) Estrogen decreases rat hypothalamic pro-opiomelanocortin messenger ribonucleic acid levels. Endocrinology 117, 2392–2396.PubMedGoogle Scholar
  103. Yamamoto K. R. (1985) Steroid receptor regulated transcription of specific genes and gene networks. Ann. Rev. Genet. 19, 209–252.PubMedGoogle Scholar
  104. Yamano M., Inagaki S., Kito S., Matsuzaki T., Shinohara Y., and Tohyama M. (1986) Enkephalinergic projection from the ventromedial hypothalamic nucleus to the midbrain central gray matter in the rat: An immunocytochemical analysis. Brain Res. 398, 337–346.PubMedGoogle Scholar
  105. Yoshikawa K., Williams C., and Sabol S. L. (1984) Rat brain pre-proenkephalin mRNA. cDNA cloning, primary structure and distribution in the central nervous system. J. Biol. Chem. 259, 14301–14308.PubMedGoogle Scholar
  106. Yoshikawa K. and Sabol S. L. (1986a) Expression of the enkephalin precursor gene in C6 rat glioma cells: Regulation by ß-adrenergic agonists and glucocorticoids. Mol. Brain Res. 1, 75–83.Google Scholar
  107. Yoshikawa K. and Sabol S. L. (1986b) Glucocoticoids and cyclic AMP synergistically regulate the abundance of preproenkephalin messenger RNA in neuroblastoma-glioma hybrid cells. Biochem. Biophys. Res. Comm. 139, 1–10.PubMedGoogle Scholar
  108. Young W. C. and Fish W. R. (1945) The ovarian hormones and spontaneous running activity in the female rat. Endocrinology 36, 181–189.Google Scholar
  109. Young III, W. S., Mezey E., and Siegel R. E. (1986a) Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neu-rosei. Lett. 70, 198–203.Google Scholar
  110. Young III, W. S., Mezey E., and Siegel R. E. (1986b) Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: analysis by quantitative in situ hybridization histochemistry. Mol. Brain Res. 1, 231–241.Google Scholar
  111. Zoeller R. T., Mason A. J., Seeburg P. N., and Young III, W. S. (1986) Steroid regulation of mRNA levels encoding precursor for gonadotropin-releasing hormone (GnRH) and GnRH-associated peptide (GAP). Abstr. Soc. Neurosci. 12, 1175.Google Scholar
  112. Zoeller R. T. and Young III, W. S. (1987) Cellular levels of messenger RNA encoding gonadotropin-releasing hormone are elevated after the LH surge on the day of proestrus. Abstr. Soc. Neurosci. 13, 19.Google Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Richard E. Harlan
    • 1
  1. 1.Department of AnatomyTulane University School of MedicineNew OrleansUSA

Personalised recommendations