Advertisement

Regulation of Nicotinic Acetylcholine Receptors by Protein Phosphorylation

  • Kathryn Miles
  • Richard L. Huganir
Part of the Molecular Neurobiology · 1988 · book series (MN)

Abstract

Neurotransmitter receptors and ion channels play a critical role in the transduction of signals at chemical synapses. The modulation of neurotransmitter receptor and ion channel function by protein phosphorylation is one of the major regulatory mechanisms in the control of synaptic transmission. The nicotinic acetylcholine receptor (nAcChR) has provided an excellent model system in which to study the modulation of neurotransmitter receptors and ion channels by protein phosphorylation since the structure and function of this receptor have been so extensively characterized.

In this article, the structure of the nAcChR from the electric organ of electric fish, skeletal muscle, and the central and peripheral nervous system will be briefly reviewed. Emphasis will be placed on the regulation of the phosphorylation of nAcChR by second messengers and by neurotransmitters and hormones. In addition, recent studies on the functional modulation of nicotinic receptors by protein phosphorylation will be reviewed.

Index Entries

cAMP-dependent protein kinase desensitization, ion channels neuropeptides neurotransmitter receptor protein kinase protein kinase C receptor-receptor interactions second messengers tyrosine kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abood, L. G., Latham, W., and Grassi, S. (1983) Isolation of a nicotinic binding site from rat brain by affinity chromatography. Proc. Natl. Acad. Sci. USA 80 3536–3539.PubMedGoogle Scholar
  2. Abood L. G., Langone J. J., Bjercke R., Lu X., and Banerjee S. (1987) Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies. Proc. Natl. Acad. Sci. 84 6587–6590.PubMedGoogle Scholar
  3. Adamo S., Zani B. M., Nerri C., Senni M. I., Molinaro M., and Eusebi F. (1985) Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Left. 190,161–164.Google Scholar
  4. Akagi H. and Kudo Y. (1985) Opposite actions of forskolin at pre-and postsynaptic sites in rat sympathetic ganglia. Brain. Res. 343, 346–350.PubMedGoogle Scholar
  5. Akasu T., Hirai K., and Koketsu K. (1981) 5-hydroxytryptamine controls AcCh-receptor sensitivity of bullfrog sympathetic ganglion cells. Brain Res. 211 217–220.PubMedGoogle Scholar
  6. Akasu T., Kojima M., and Koketsu K. (1983) Substance P modulates the sensitivity of the nicotinic receptor in amphibian cholinergic transmission. Br. J. Pharmac. 80,123–131.Google Scholar
  7. Akasu T., Ohta Y., and Koketsu K. (1984) Neuropeptides facilitate the desensitization of nicotinic acetylcholine receptor in frog skeletal muscle endplate. Brain Res. 290,342–347.PubMedGoogle Scholar
  8. Albuquerque E. X., Deshpande S. S., Aracava Y., Alkondon M., and Daly J. W. (1986) A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor: A study with forskolin and its analogs. FEBS Lett. 199113–120.PubMedGoogle Scholar
  9. Anholt R., Montal M., and Lindstrom J. (1983) Incorporation of acetylcholine receptors in model membranes: An approach aimed at studies of the molecular basis of neurotransmission, Peptide and Protein Reviews, vol. 1, Hearn M., ed., Dekker, New York, pp. 95–137.Google Scholar
  10. Anthony D. T., Schuetze S. M., and Rubin L. L. (1984) Transformation by Rous sarcoma virus prevents acetylcholine receptor clustering on cultured chicken muscle fibers. Proc. Natl. Acad. Sci. USA 81 2265–2269.PubMedGoogle Scholar
  11. Anthony D. T., Rubin L. L., Miles K., and Huganir R. L. (1986) Forskolin regulates phosphorylation of the nicotinic acetylcholine receptor in rat primary muscle cell cultures. Soc. Neurosci. Abstr. 12 148.Google Scholar
  12. Barnekow A., Schartl B., Anders F., and Bauer A. (1982) Identification of a fish protein associated with a kinase activity and related to the rous sarcoma virus transforming protein. Cancer Res. 42, 2429–2433.PubMedGoogle Scholar
  13. Berridge M. J. and Irvine R. F. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312 315–321.PubMedGoogle Scholar
  14. Betz H. and Changeux J. -P. (1979) Regulation of muscle acetylcholine receptor sythesis in vitro by cyclic nucleotide derivatives. Nature 278,749–752.PubMedGoogle Scholar
  15. Betz H., Graham D., and Rehm H. (1982) Identification of polypeptides associated with a putative neuronal acetylcholine receptor. J. Biol. Chem. 257, 11390–11394.PubMedGoogle Scholar
  16. Betz H. (1983) Regulation of a-bungarotoxin receptor accumulation in chick retina cultures: Effects of membrane depolarization, cyclic nucleotide derivatives and Ca2+. J. Neurosci. 3,1333–1341.PubMedGoogle Scholar
  17. Betz H. and Pfeiffer F. (1984) Monoclonal antibodies against the a-bungarotoxin-binding protein of chick optic lobe. J. Neurosci. 4,2095–2105.PubMedGoogle Scholar
  18. Block G. A. and Billiar R. B. (1979) Immunologic similarites between the hypothalamic a-bungarotoxin receptor and the Torpedo californica nicotinic cholinergic receptor. Brain Res. 178 381–387.PubMedGoogle Scholar
  19. Blossner J. C. and Appel S. H. (1980) Regulation of acetylcholine receptor by cyclic AMP. J. Biol. Chem. 255,1235–1238.Google Scholar
  20. Boulter J., Luyten W., Evans K., Mason P., Ballivet J., Goldman D., Stengelin S., Martin G., Heinemann S., and Patrick J. (1985) Isolation of a clone coding for the a-subunit of a mouse acetylcholine receptor. J. Neurosci. 5, 2545–2552.PubMedGoogle Scholar
  21. Boulter J., Evans K., Martin G., Mason P., Stengelin S., Goldman D., Heinemann S., and Patrick J. (1986a) Isolation and sequence of cDNA clones coding for the precursor to theysubunit of mouse muscle nicotinic acetylcholine receptor. J. Neurosci. Res. 16 37–49.Google Scholar
  22. Boulter J., Evans K., Goldman D., Martin G., Treco D., Heineman S., and Patrick J. (1986b) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor a-subunit. Nature 319 368–374.Google Scholar
  23. Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., and Patrick J. (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. USA 84 7763–7767.PubMedGoogle Scholar
  24. Boyd N. D. (1987) Two distinct kinetic phases of desensitization of acetylcholine receptors of clonal rat pheochromocytoma cells. J. Physiol. 38945--67.PubMedGoogle Scholar
  25. Boyd N. D. and Leeman S. E. (1987) Multiple actions of substance P that regulate the functional properties of acetylcholine receptors of clonal rat PC12 cells. J. Physiol. 389, 69–97.PubMedGoogle Scholar
  26. Breer H., Kleene R., and Hinz G. (1985) Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J. Neurosci. 5, 3386–3392.PubMedGoogle Scholar
  27. Browning M. D., Huganir R. L., and Greengard P. (1985) Protein phosphorylation and neuronal function. J. Neurochem. 4511–23.Google Scholar
  28. Buonanno A., Mudd J., Shah V., and Merlie J. P. (1986) A universal oligonucleotide probe for acetylcholine receptor genes. J. Biol. Chem. 261 16451–16458.PubMedGoogle Scholar
  29. Carr C., McCourt D., and Cohen J. B. (1987) The 43kilodalton protein of Torpedo nicotinic postsynaptic membranes: Purification and determination of primary structure. Biochem 26, 7090–7102.Google Scholar
  30. Changeux J.-P. (1981) The acetylcholine receptor. An allosteric membrane protein. Harvey Lecture Series 75, 85–255.Google Scholar
  31. Changeux J. -P., Devillers-Thiery A., and Chemouilli P. (1984) Acetylcholine receptor: an allosteric protein. Science 2251335–1345.PubMedGoogle Scholar
  32. Chiappinelli V. A. (1984) x-Bungarotoxin: a probe for the neuronal nicotinic acetylcholine receptor. Trends in Pharm. Sci. 5,425–428.Google Scholar
  33. Clapham D. E. and Neher E. (1984), Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells. J. Physiol. 347, 255–277.PubMedGoogle Scholar
  34. Clarke P. B., Pert C. B., and Pert A. (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain. Res. 323, 390–395.PubMedGoogle Scholar
  35. Clarke P. B. S., Schwartz R. D., Paul S. M., Pert C. B., and Pert A. (1985) Nicotinic binding in rat brain: Autoradiographic comparison of 3H-acetylcholine, 3H-nicotine and I’25-a-bungarotoxin. J. Neurosci, 5,1307–1315.PubMedGoogle Scholar
  36. Clarke P. B. S. (1987) Recent progress in identifying nicotinic cholinoceptors in mammalian brain. Trends in Pharmacol. Sci. 8 32–35.Google Scholar
  37. Claudio T., Ballivert M., Patrick J., and Heinemann S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor ‘y subunit. Proc. Natl. Acad. Sci. USA 80 1111–1115.PubMedGoogle Scholar
  38. Cohen P. (1982) The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296 613–620.PubMedGoogle Scholar
  39. Cotton P. C. and Brugge J. S. (1983) Neural tissues express high levels of the cellular src gene product pp60“K. Mol. and Cell. Biol. 3,1157–1162.Google Scholar
  40. Conti-Tronconi B. M., Dunn S. M. J., Barnard E. A., Dolly J. O., Lai F. A., Ray N., and Raftery M. A. (1985) Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc. Natl. Acad. Sci. USA 82,5208–5212.PubMedGoogle Scholar
  41. Davis, C. G., Gordon A. S., and Diamond I. (1982) Specificity and localization of the acetylcholine receptor kinase. Proc. Natl. Acad. Sci. USA 79,3666–3670.PubMedGoogle Scholar
  42. Devillers-Thiery A., Giraudat J., Bentaboulet M., and Changeux J. P. (1983) Complete mRNA coding sequence of the acetylcholine-binding a-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80 2067–2071.PubMedGoogle Scholar
  43. Downing J. E. G., and Role L. W. (1987) Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc. Natl. Acad. Sci. USA 84 7739–7743.PubMedGoogle Scholar
  44. Duggan A. W., Hall J. G., and Lee C. Y. (1976) Alphabungarotoxin, cobra neurotoxin and excitation of Renshaw cells by acetylcholine. Brain Res. 107, 166–170.PubMedGoogle Scholar
  45. Eardley D. and McGee R. (1985) Both substance P agonists and antagonists inhibit ion conductance through nicotinic acetylcholine receptors on PC12 cells. Eur. J. Pharm. 114, 101–104.Google Scholar
  46. Edelman A. M., Blumenthal D. K., and Krebs E. G. (1987) Protein serine/threonine kinases. Ann. Rev. Biochem. 56, 567–613.PubMedGoogle Scholar
  47. Eusebi F., Molinaro M., and Zani B. M. (1985) Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J. Cell Biol. 100, 1339–1342.PubMedGoogle Scholar
  48. Fambrough D. M. (1979) Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59,165–227.PubMedGoogle Scholar
  49. Finer-Moore J. and Stroud R. M. (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci.. USA 81,155–159.PubMedGoogle Scholar
  50. Fontaine B., Klarsfeld A., Hökfelt T., and Changeux J. -P. (1986) Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Letts. 71, 59–65.Google Scholar
  51. Frail D. E., Mudd J., Shah V., Carr C., Cohen J. B., and Merlie J. P. (1987) cDNAs for the postsynaptic 43kDa protein of Torpedo electric organ encode two proteins with different carboxyl termini. Proc. Natl. Acad. Sci. USA 84,6302–6306.PubMedGoogle Scholar
  52. Freeman J. A., Schmidt J. T., and Oswald R. E. (1980) Effect of a-bungarotoxin on retinotectal synaptic transmission in the goldfish and the toad. Neurosci. 5,929–941.Google Scholar
  53. Froehner S. C. (1986) The role of postsynaptic cytoskeleton in AChR organization. Trends in Neurosci. 9,37–41.Google Scholar
  54. Giraudat J., Dennis M., Heidmann T., Chang J.-Y., and Changeux J.-P. (1986) Structure of the high-affinity binding site for noncompetitive blockers of the ace tylcholine receptors: Serine-262 of the S is labeled by [3H]chlorpromazine. Proc. Natl. Acad. Sci. LISA 83,2719–2723.Google Scholar
  55. Goldman D., Simmons D., Swanson L. W., Patrick J., and Heinemann S. (1986) Mapping of brain areas expressing RNA homologous to two different acetylchoine receptor a-subunit c-DNA. ProcNatl. Acad. Sci. USA 83,4076–4080.Google Scholar
  56. Goldman D., Deneris E., Luyten W., Kochhar A., Partick J., and Heinemann S. (1987) Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell, 48, 965–973.PubMedGoogle Scholar
  57. Gordon A. S., Davis C. G., and Diamond, I. (1977a) Phosphorylation of membrane proteins at a cholinergic synapse. Proc. Natl. Acad. Sci. USA 74, 263–267.Google Scholar
  58. Gordon A. S., Davis C. G., Milfay D., and Diamond I. (1977b) Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor enriched membranes of Torpedo californica. Nature 267, 539–540.Google Scholar
  59. Gordon A. S., Milfay P., Davis C. G., and Diamond I. (1979a) Protein phosphatase activity in acetylcholine receptor-enriched membranes. Biochem. and Biophys. Res. Commun. 87, 876–883.Google Scholar
  60. Gordon A. S., Milfay P., and Diamond I. (1983) Identification of a molecular weight 43,000 protein kinase in acetylcholine receptor-enriched membranes. Proc. Natl. Acad. Sci. USA 80,5862–5865.PubMedGoogle Scholar
  61. Gordon A. S. and Milfay D. (1986) v1, a Mr43,000 component of postsynaptic membranes, is a protein kinase. Proc. Natl. Acad. Sci. USA 83, 4172–4174.PubMedGoogle Scholar
  62. Grenningloh G., Rienitz A., Scmitt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinger E. D., and Betz H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215–220.PubMedGoogle Scholar
  63. Halvorsen S. W. and Berg D. K. (1987) Affinity labeling of neuronal acetylcholine receptor subunits with an a-neurotoxin that blocks receptor formation. J. Neurosci. 7,2547–2555.PubMedGoogle Scholar
  64. Hanke W. and Breer H. (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321, 171–174.PubMedGoogle Scholar
  65. Heilbronn H., Eriksson R., and Salmonsson R. (1985) Regulation of the nicotinic acetylcholine receptor by phosphorylation. Molecular Basis of NerveActivity, Changeux J. -P., Hucho F., Maelicke, A., and Neumann, E., eds., Walter de Gruyter & Co., Berlin, pp. 237–250.Google Scholar
  66. Heinemann S., Asouline G., Ballivet M., Boulter J., Connolly J., Deneris E., Evans K., Evans S., Forrest J., Gardner P., Goldman D., Kochhar A., Luyten W., Mason P., Treco D., Wada K., and Patrick J. (1987) Molecular biology of the neuraland muscle nicotinic acetylcholine receptors. Molecular Neuroobiology, Heinemann S. and Patrick J., eds., Plenum Press, New York, pp 45–96.Google Scholar
  67. Henley J. M. and Oswald R. (1987) Two distinct (-) nicotine binding sites in goldfish brain. J. Biol. Chem. 262, 6691–6698.PubMedGoogle Scholar
  68. Hess G. P., Pasquale E. B., Walker J. W., and McNamee M. G. (1982) Comparison of acetylcholine re ceptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: Chemical kinetic measurements in the millisecond region. Proc. Natl. Acad. Sci. USA 79, 963–967.PubMedGoogle Scholar
  69. Higgins L. S. and Berg D. K. (1987) Immunological identification of a nicotinic acetylcholine receptor on bovine chromaffin cells. J. Neurosci. 7, 1792–1798.PubMedGoogle Scholar
  70. Hucho F., Oberthur W., and Lottspeich F. (1986) The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 205 137–142.PubMedGoogle Scholar
  71. Huganir R. L. and Racker E. (1982) Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica. J. Biol. Chem. 257, 9372–9378.Google Scholar
  72. Huganir R. L. and Greengard P. (1983) cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80,1130–1134.PubMedGoogle Scholar
  73. Huganir R. L, Albert K. A., and Greengard P. (1983) Phosphorylation of the nicotinic acetylcholine receptor by Ca2iphospholipid-dependent protein kinase, and comparison with its phosphorylation by cAMP-dependent protein kinase. Soc. Neurosci. Abstr. 9 578.Google Scholar
  74. Huganir R. L., Miles K., and Greengard P. (1984) Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase. Proc. Natl. Acad. Sci. USA 81 6963–6972.Google Scholar
  75. Huganir R. L. (1986a) Biochemical mechanisms in the modulation of the ion channel function. Neuro-modulation, Kaczmarek, L. and Levitan, I., eds., Raven Press, NY, pp 64–85.Google Scholar
  76. Huganir R. L. (1986b) Phosphorylation of purified ion channel proteins. Neuromodulation, Kaczmarek, L. and Levitan, I., eds., Raven Press, NY, pp 86–99.Google Scholar
  77. Huganir R. L., Delcour A. H., Greengard P., and Hess G. P. (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321 774–776.PubMedGoogle Scholar
  78. Huganir R. L. and Greengard P. (1987) Regulation of receptor function by protein phosphorylation. TIPS, 8 472–477.Google Scholar
  79. Hunter T. (1982) Synthetic peptide substrates for a tyrosine protein kinase. J. Biol. Chem. 257, 4843–4848.PubMedGoogle Scholar
  80. Hunter T., Ling N., and Cooper J. A. (1984) Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature 311 450–483.Google Scholar
  81. Hunter T. and Cooper J. A. (1985) Protein-tyrosine kinases. Ann. Rev. Biochem. 54,897–930.PubMedGoogle Scholar
  82. Ingebritsen T. S. and Cohen P. (1983) Protein phosphatases: Properties and role in cellular regulation. Science 221 331–338.PubMedGoogle Scholar
  83. Jacob M. H. and Berg D. K. (1983) The ultrastructural localization of a-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J. Neurosci. 3, 260–271.PubMedGoogle Scholar
  84. Jacob M. H., Berg D. K., and Lindstrom, J. M. (1984) Shared antigenic determinant between Electrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons. Proc. Natl. Acad. Sci. USA 81,3223–3227.PubMedGoogle Scholar
  85. Kandel E. R. and Schwartz J. H. (1982) Molecular biology of learning: Modulation of transmitter release. Science 29,433–443.Google Scholar
  86. Karlin A., Weill C. I., McNamee M. G., and Valderrama R. (1975) Facets of the structure of acetylcholine receptors from Electrophorus and Torpedo. Symp. Quant. Biol. 40,203–213.Google Scholar
  87. Kemp B. E., Graves D. J., Benjamin E. and Krebs E. G. (1977) Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J. Biol. Chem. 252, 4888–4894.PubMedGoogle Scholar
  88. Kemp G., Bentley L., McNamee M. G., and Morley B. J. (1985) Purification and characterization of the a-bungarotoxin binding protein from rat brain. Brain Res. 347, 274–283.PubMedGoogle Scholar
  89. Kobayashi H., Hashimoto K., Uchida S., Sakuma J., Takami K., Tohyama M., Izumi F., and Yoshida H. (1987) Calcitonin gene-related peptide stimulates adenylate cyclase activity in rat striatal muscle. Experientia 43, 314–316.PubMedGoogle Scholar
  90. Koketsu K., Miyagowa M., and Akasu T. (1982) Catecholamine modulates nicotinic AcCh-receptor sensitivity. Brain Res. 236, 487–491.Google Scholar
  91. Krebs E. G. and Beavo J. A. (1979) Phosphorylationdephosphorylation of enzymes. Ann. Rev. Biochem. 48, 923–959.PubMedGoogle Scholar
  92. Krnjevic K. and Lekic D. (1977) Substance P selectively blocks excitation of Renshaw cell by acetylcholine. Can. J. Physiol. Pharm. 55, 958–961.Google Scholar
  93. Kubo T. Noda, M., Takai T., Tanabe T., Kayano T., Shimizu S., Tanaka K., Takahashi H., Hirose T., Inayama S., Kikuno R., Miyata T., and Numa S. (1985) Primary structure of S subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 149, 5–13.Google Scholar
  94. LaPolla R. J., Mayne K. M., and Davidson N. (1984) Isolation and characterization of a cDNA clone for the complete protein coding of the 8 subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. LISA 81, 7970–7974.Google Scholar
  95. Laufer R. and Changeux J.-P. (1987) Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: Possible neurotrophic role for a coexisting neuronal messenger. EMBO Journal 6, 901–906.PubMedGoogle Scholar
  96. Levy B. T., Sorge L. K., Meymandi A., and Maness P. F. (1984) pp60`-src kinase is in chick and human embryonic tissues. Developmental Biology 104, 9–17.PubMedGoogle Scholar
  97. Lindstrom J. (1986), Probing nicotinic acetylcholine receptors with monoclonal antibodies. TINS 9, 401–407.Google Scholar
  98. Livett B. G., Kozousek V., Mizobe F., and Dean D. M. (1979) Substance P inhibits nicotinic activation of chromaffin cells. Nature 278, 256, 257.Google Scholar
  99. Loring R. H. D., Andrews D., Lane W., and Zigmond R. (1986) Amino acid sequence of Toxin F, a snake venom toxin that blocks neuronal nicotinic receptors. Brain Res. 385, 30–37.PubMedGoogle Scholar
  100. Magleby K. L. and Pallotta B. S. (1981) A study of desensitization of acetylcholine receptors using nerve-released transmitter in the frog. J. Physiol. 316, 225–250.PubMedGoogle Scholar
  101. Mantyh P. W., Pinnock R. D., Downes C. P., Goedert M., and Hunt S. P. (1984) Correlation between inositol phospholipid hydrolysis and Substance P receptors in rat CNS. Nature 309, 795–797.PubMedGoogle Scholar
  102. Matteoli M., Haimann C., Torri-Tarelli F., Polak J. M., Ceccarelli B., and Decamilli P. (1987) Differential effect of a-latrotoxin in the release of acetylcholine and calcitonin gene-related peptide at the frog neuromuscular junction. Soc. Neurosci. Abstr. 13, 317.Google Scholar
  103. Margiotta J. F., Berg D. K., and Dionne V. E. (1987) Cyclic AMP regulates the proportion of functional acetylcholine receptors on chicken ciliary ganglion neurons. Proc. Natl. Acad. Sci. USA 84, 8155–4159.PubMedGoogle Scholar
  104. Marks M. J., Stitzel J. A., Romm E., Wehner J. M., and Collins A. C. (1986) Nicotinic binding sites in rat and mouse brain: Comparison of acetylcholine, nicotine and a-bungarotoxin. Molecular Pharm. 30, 427–436.Google Scholar
  105. McGee R. J. and Liepe B. (1984) Acute elevation of cyclic AMP does not alter the ion-conducting properties of the neuronal nicotinic acetylcholine receptor of PC12 cells. Molecular Pharm. 26, 51–56.Google Scholar
  106. McHugh E. M. and McGee Jr. R. (1986) Direct anesthetic-like effects of forskolin on the nicotinic acetylcholine receptors of PC12 cells. J. Biol. Chem. 261, 3103–3106.PubMedGoogle Scholar
  107. Merlie J. P., Sebanne R., Gardner S., and Lindstrom J. (1983) cDNA clone for the a-subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. Natl. Acad. Sci. USA 80, 3845–3949.PubMedGoogle Scholar
  108. Middleton P., Jaramillo F., and Scheutze S. M. (1986a) Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc. Natl. Acad. Sci. USA 83, 4967–4971.Google Scholar
  109. Middleton P., Rubin L., and Scheutze S. (1986b) Forskolin increases the rate of acetylcholine receptor desensitization on rat myotubes in vitro. Soc. Neurosci. Abstr. 12, 148.Google Scholar
  110. Middleton P., Rubin L. L., and Schuetze S. M. (1988) Modulation of acetylcholine receptor desensitization in rat myotubes. J. Neurosci. (in press).Google Scholar
  111. Miles K., Anthony D. T., Rubin L. L., Greengard P., and Huganir R. L. (1987) Regulation of nicotinic acetylcholine receptor phoshorylation in rat myotubes by forskolin and cAMP. Proc. Natl. Acad. Sci. USA 84, 6591–6595.PubMedGoogle Scholar
  112. Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., and Sakmann B. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411.PubMedGoogle Scholar
  113. Nairn A. C., Hemmings Jr. H. C., and Greengard P. (1985) Protein kinases in the brain. Ann. Rev. Biochem. 54, 931–976.PubMedGoogle Scholar
  114. Nef P., Mauron A., Stalder R., Alliod C., and Ballivet M. (1984) Structure, linkage, and sequence of the two genes encoding the S and -y subunits of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81, 7975–7979.PubMedGoogle Scholar
  115. Nestler E. J. and Greengard P. (1984), Protein phosphorylation in the nervous system, John Wiley & Sons, Inc. New York, pp. 195–214.Google Scholar
  116. New H. V. and Mudge A. W. (1986) Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323, 809–811.PubMedGoogle Scholar
  117. Nicoll R. A., Schenker C., and Leeman S. E. (1980) Substance P as a transmitter candidate. Ann. Rev. Neurosci. 3, 227–268.PubMedGoogle Scholar
  118. Nishizuka Y. (1980) Three multifunctional protein kinase systems in transmembrane control, Molecular Biology Biochemistry and Biophysics, vol. 32, Chemical Recognition in Biology. (Chapeville F. and Haenni A. -L., eds.) Springer-Verlag, Berlin, pp. 113–135.Google Scholar
  119. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., and Numa S. (1982) Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797.PubMedGoogle Scholar
  120. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T., and Numa S. (1983a) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528–532.Google Scholar
  121. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., Asai M., Takashima H., Inayama S., Miyata T., and Numa S. (1983b) Primary structures of ß and S subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251–255.Google Scholar
  122. Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S., and Numa S. (1983c) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor. Nature 305, 818–823.Google Scholar
  123. Norman R. I., Mehraban F., Barnard E. A., and Dolly J. O. (1982) Nicotinic acetylcholine receptor from chick optic lobe. Proc. Natl. Acad. Sci. USA 79, 1321–1325.PubMedGoogle Scholar
  124. Patrick J. and Stallcup W. B. (1977) Immunological distinction between acetylcholine receptor and the a-bungarotoxin-binding component in sympathetic neurons. Proc. Natl. Acad. Sci. USA 74, 4689–4692.PubMedGoogle Scholar
  125. Patschinsky T., Hunter T., Esch F. S., Cooper J. A., and Sefton B. M. (1982) Analysis of the sequence of amino acids surrounding sites of tyrosine phos-phorylation. Proc. Natl. Acad. Sci. USA 79, 973–977.PubMedGoogle Scholar
  126. Pike L. J., Gallis B., Casnellie J. E., Bornstein P., and Krebs E. G. (1982) Epidermal growth factor stimulates the phosphorylation of synthetic tyrosine-containing peptides by A431 cell membranes. Proc. Natl. Acad. Sci. USA 79,1443–1447.PubMedGoogle Scholar
  127. Raftery M. A., Hunkapiller M. W., Strader C. D., and Hood L. E. (1980) Acetylcholine receptor: Complex of homologous subunits. Science 208,1454–1457.PubMedGoogle Scholar
  128. Ravdin P. M. and Berg D. K. (1979) Inhibition of neuronal acetylcholine sensitivity by a-toxins from Bungarus multicinctus venom. Proc. Natl. Acad. Sci. USA 76, 2072–2076.PubMedGoogle Scholar
  129. Reynolds J. A. and Karlin A. (1978) Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17, 2035–2038.Google Scholar
  130. Role L. W. (1984) Substance P modulation of acetyl-choline-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons. Proc. Natl. Acad. Sci. USA 81, 2924–2928.PubMedGoogle Scholar
  131. Romano C. and Goldstein A. (1980) Stereospecific nicotine receptors on rat brain membranes. Science 210, 647–650.PubMedGoogle Scholar
  132. Rosenfeld M. G., Mermod J. -J., Amara S. G., Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W., and Evans R. M. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304,129–135.PubMedGoogle Scholar
  133. Ross A., Rapuano M., Schmidt J., and Prives J. (1987) Phosphorylation and assembly of nicotinic acetylcholine receptor subunits in cultured chick muscle cells. J. Biol. Chem. 262,14640–14647.PubMedGoogle Scholar
  134. Ryall R. W. and Belcher G. (1977) Substance P selectively blocks nicotinic receptors on Renshaw cells: A possible synaptic inhibitory mechanism. Brain Res. 137, 376–380.PubMedGoogle Scholar
  135. Safran A., Neumann P., and Fuchs S. (1986) Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies. EMBO J. 5 3175–3178.PubMedGoogle Scholar
  136. Safran, A., Sagi-Eisenberg, R., Neumann, D., and Fuchs, S. (1987), Phosphorylation of the ace-tylcholine receptor by protein kinase c and identification of the phosphorylation site within the receptor S subunit. J. Biol. Chem. 262,10506–10510.PubMedGoogle Scholar
  137. Saitoh T. and Changeux J.-P (1981) Change in the state of phosphorylation of acetylcholine receptor during maturation of the electromotor synapse in Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. USA 78, 4430–4434.PubMedGoogle Scholar
  138. Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencourse T. A., Seeburg P. H., and Barnard E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328 221–227.PubMedGoogle Scholar
  139. Schuetze S. M. and Role L. W. (1987) Developmental regulation of nicotinic acetylcholine receptors. Ann. Rev. Neurosci. 10 403–457.PubMedGoogle Scholar
  140. Schneider M., Adee C., Betz H., and Schmidt J. (1985) Biochemical characterization of two nicotinic receptors from optic lobe of the chick. J. Biol. Chem. 260,14505–14512.PubMedGoogle Scholar
  141. Schwartz R. D., McGee Jr. R., and Keller K. J. (1982) Nicotinic cholinergic receptors labeled by [3H] acetylcholine in rat brain. Molecular Pharm. 22, 5662.Google Scholar
  142. Seamon K. B. and Daly J. W. (1986) Forskolin: Its biological and chemical properties Advances in Cyclic Nucleotide and Protein Phosphorylation Ressearch, vol. 20, Greengard P. and Robison G. A., eds., Raven Press, New York, pp. 1–50.Google Scholar
  143. Sefton B. M. and Hunter T. (1984) Tyrosine protein kinases, Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Greengard P. and Robison G. A., eds.) Raven Press, New York.Google Scholar
  144. Seto A., Arimatsu Y., and Amano T. (1981) Subunit structure of a-bungarotoxin binding component in mouse brain. J. Neurochem. 37, 210–216.PubMedGoogle Scholar
  145. Shores C. G., Cox M. E., and Maness P. F. (1987) A tyrosine kinase related to pp60`-$rc is associated with membranes of Electrophorus electricus electric organ. J. Biol. Chem. 262, 9477–9485.PubMedGoogle Scholar
  146. Simasko S. M., Soares J. R., and Weiland G. A. (1985) Structure-activity relationship for substance P inhibition of carbamylcholine-stimulated 22Na+ Flux in neuronal (PC12) and non-neuronal (BC3H1) cell lines. J. Pharm. and Exp. Therapeutics 235, 601–605.Google Scholar
  147. Simasko S. M., Durkin J. A., and Weiland G. A. (1987) Effects of substance P on nicotinic acetylcholine receptor function in PC12 cells. J. Neurochem. 49 253–260.PubMedGoogle Scholar
  148. Smilowitz H., Hadjian R. A., Dwyer J., and Feinstein M. B. (1981) Regulation of acetylcholine receptor phosphorylation by calcium and calmodulin. Proc. Natl. Acad. Sci. USA 78, 4708–4712.PubMedGoogle Scholar
  149. Smith M. A., Stollberg J., Lindstrom J. M., and Berg D. W. (1985) Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor. J. Neurosci. 5, 2726–2731.PubMedGoogle Scholar
  150. Smith M. M., Lindstrom J., and Merlie J. P. (1987a) Formation of the a-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. J. Biol. Chem. 262, 4367–4376.Google Scholar
  151. Smith M. M., Merlie J. P., and Lawrence Jr. J. C., (1987b) Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes. Proc. Natl. Acad. Sci. USA 84,6601–6605.Google Scholar
  152. Sorge J. P., Sorge L. K., and Maness P. F. (1984) pp60c$rc is expressed in human fetal and adult brain. Am. J. Pathol. 119 151–157.Google Scholar
  153. Souroujon M. C., Neumann D., Pizzighella S., Fridkin M., and Fuchs S. (1986) Mapping of the cAMP-dependent phosphorylation sites on the acetylcholine receptor. EMBO J. 5, 543–546.PubMedGoogle Scholar
  154. Stallcup W. B. and Patrick J. (1980) Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line. Proc. Natl. Acad. Sci. USA 77, 634–638.PubMedGoogle Scholar
  155. Stollberg J., Whiting P. J., Lindstom J. M., and Berg D. K. (1986) Functional blockade of neuronal acetylcholine receptors by antisera to a putative receptor from brain. Brain Research 378,179–182.PubMedGoogle Scholar
  156. Takai T., Noda M., Mishina M., Shimizu S., Furutani Y., Kayano T., Ikeda T., Kubo T., Takahashi H., Takahashi T., Kuno M., and Numa S. (1985) Cloning, sequencing, and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315 761–764.PubMedGoogle Scholar
  157. Takami K., Kawai Y., Uchida S., Tohyama M., Shiotani Y., Yoshida H., Emson P.C., Girgis S., Hillyard C. J., and Maclntyre I. (1985) Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Letts. 60 227–230.Google Scholar
  158. Takami K., Hashimoto K., Uchida S., Tohyama M., and Yoshida H. (1986) Effect of calcitonin gene-related peptide on the cyclic AMP level of isolated mouse diaphragm. Jpn. J. Pharmacol. 42,345–350.PubMedGoogle Scholar
  159. Tanabe T., Noda M., Furut ani Y., Takai T.,Takahashi H., Tanaka K., Hirose T., Inayama S., and Numa S. (1984) Primary structure of ß subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 144, 11–17.PubMedGoogle Scholar
  160. Tank D. E., Huganir R. L., Greengard P., and Webb W. W. (1983) Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80, 5129–5133.PubMedGoogle Scholar
  161. Teichberg V. I., Sobel A., and Changeux J.-P. (1977) In vitro phosphorylation of the acetylcholine receptor. Nature 267, 540–542.Google Scholar
  162. Teichberg V. I. and Changeux J.-P. (1977) Evidence for protein phosphorylation and dephosphorylation in membrane fragments isolated from the electric organ of Electrophorus electricus. FEBS Letts 74, 71–76.Google Scholar
  163. Teyler T. J. and DiScenna P. (1987) Long-term potentiation. Ann. Rev. Neurosci. 10,131–161.PubMedGoogle Scholar
  164. Vandlen R. L., Wu W. C. -S., Eisencach J. C., and Raftery M. A. (1979) Studies of the composition of purified Torpedo californica acetylcholine receptor and of its subunits. Biochemistry 18,1845–1854.PubMedGoogle Scholar
  165. Vicini S. and Schuetze S. M. (1985) Gating properties of acetylcholine receptors at developing rat endplates. J. Neurosci. 5,2212–2224.PubMedGoogle Scholar
  166. Watson S. P. and Downes C. P. (1983) Substance P induced hydrolysis of inositol phospholipids in guinea-pig ileum and rat hypothalamus. Eur. J. Pharm. 93,245–253.Google Scholar
  167. Whiting P. J. and Lindstrom J. M. (1986a) Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry 25, 2082–2093.Google Scholar
  168. Whiting P. and Lindstrom J. (1986b) Pharmacological properties of immuno-isolated neuronal nicotinic receptors. J. Neurosci. 6, 3061–3069.Google Scholar
  169. Whiting P. and Lindstrom J. (1987a) Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc. Natl. Acad. Sci. USA 84, 595–599.Google Scholar
  170. Whiting P. and Lindstrom J. (1987b) Affinity labelling of neuronal acetylcholine-receptors localizes acetylcholine-binding sites to their 0-subunits. FEBS Letts 213, 55–60.Google Scholar
  171. Whiting P. J., Schoepfer R., Seanson L. W., Simmons D. M., and Lindsrom J. M. (1987a) Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors. Nature 327,515–518.Google Scholar
  172. Whiting P., Esch F., Shimasaki S., and Lindstrom J. (1987b) Neuronal nicotinic acetylcholine receptor 0-subunit is coded for by the cDNA clone a4. FEBS Letts 219, 459–463.Google Scholar
  173. Witzemann V., Barg B., Nishikawa Y., Sakmann B., and Numa S. (1987) Differential regulation of muscle acetylcholine receptor y-and c-subunit mRNAs. FEBS Letts 223,104–112.Google Scholar
  174. Wonnacott S., Harrison R., and Lunt G. (1982) Immunological cross-reactivity between the a-bungarotoxin-binding component from rat brain and nicotinic acetylcholine receptor. J. Neuroimmunol. 3, 1–13.PubMedGoogle Scholar
  175. Wonnacott S. (1986) a-bungarotoxin binds to low affinity nicotine binding sites in rat brain. J. Neuro. chem. 47,1706–1712.Google Scholar
  176. Yee G. H. and Huganir R. L. (1987) Determination of the sites of cAMP-dependent phosphorylation on the nicotinic acetylcholine receptor. J. Biol. Chem. 262,16748–16753.PubMedGoogle Scholar
  177. Zani B. M., Grassi F., Molinaro M., Monaco L., and Eusebi F. (1986) Cyclic AMP regulates the life time of acetylcholine-activated channels in cultured myotubes. Biochem. Biophys. Res. Commun. 140, 243–249.PubMedGoogle Scholar
  178. Zavoico G. B., Comerci C., Subers E., Egon J. J., Huang, C. K., Feinstein M. B., and Smilowitz H. (1984) cAMP, not Ca2icalmodulin, regulates the phosphorylation of acetylcholine receptor in Torpedo californica electroplax. Biochimica et Biophysica Acta 770, 225–229.Google Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Kathryn Miles
    • 1
  • Richard L. Huganir
    • 2
  1. 1.The Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUSA
  2. 2.Howard Hughes Medical Institute, Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations