Effects of Chronic Ethanol and Fish Oil on Plasma and Liver Lipids and Plasma Apoproteins

  • M. R. Lakshman
  • Stuart J. Chirtel
  • Laura L. Chambers
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 21)

Abstract

A number of studies have shown that inclusion of polyunsaturated fatty acids in the diet has a marked hypolipidemic effect. Most of these studies have utilized highly polyunsaturated vegetable oils such as corn oil or safflower oil which belong to the w-6 family. Fish oils which are very rich in w-3 polyunsaturated fatty acids have been shown to have pronounced hypolipidemic effects (2,6,7,8,24,26). The members of the w-6 and w-3 family are considered to be essential fatty acids for mammals because they cannot synthesize these fatty acids de novo (1). The metabolic differences between dietary fish oils and vegetable oils have been examined only recently (7,8,24). Harris et al. (7) have found that both types of polyunsaturated fat diets reduce plasma total cholesterol and low density lipoproteins (LDL) cholesterol, but only the fish oil diet significantly reduces the triglyceride and very low density lipoproteins (VLDL) levels. Neither diet has any significant effect on the plasma high density lipoproteins (HDL) cholesterol concentration (7). On a unit weight basis, the w-3 fatty acids have a greater hypocholesterolemic effect than the w-6 fatty acids. Furthermore, the hypotriglyceridemic effect seems to be unique to w-3 fatty acids.

Keywords

Cholesterol Corn Filtration Albumin Carbohydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahrens,Jr., E.H. (1976) Ann. Intern. Med. 85, 87–93.PubMedGoogle Scholar
  2. 2.
    Ahrens, Jr., E.H., Insull, Jr., W. Hirsch, J., Stoffel, W., Peterson, J.W., Farquhar, J.W., Miller, T. and Thomasson, H.J. (1959) Lancet 1. 115–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Baraona, E. and Lieber, CS. (1970) J. Clin. Invest. 49, 769–777.PubMedCrossRefGoogle Scholar
  4. 4.
    Blum, C.B., Aron, L. and Sciacca, R. (1980) J. Clin. Invest. 66, 1240–1250.PubMedCrossRefGoogle Scholar
  5. 5.
    Fainaru, M., Havel, R.J. and Imaizumi, K. (1977) Biochim. Biophys. Acta. 490, 140–155.Google Scholar
  6. 6.
    Harris, W.S. and Connor, W.E. (1980) Trans. Assoc. Am. Phys. 43, 148–155.Google Scholar
  7. 7.
    Harris, W.S., Connor, W.E. and McMurray, M.P. (1983) Metabolism 32, 179–189.PubMedCrossRefGoogle Scholar
  8. 8.
    Harris, W.S., Connor, W.E., Inkeles, S.B. and Illingworth, D.R. (1984) Metabolism 33, 1016–1019.PubMedCrossRefGoogle Scholar
  9. 9.
    Havel, R.J., Eder, H.A. and Bragdon, J.H. (1955) J. Clin. Invest. 34, 1345–1353.PubMedCrossRefGoogle Scholar
  10. 10.
    Herbert, P.N., Forte, T., Shulman, R.S., Lapiana, M.J., Gong, E.L., Levy R.I., Fredrickson, D.S. and Nichols, A.V. (1975) Prep. Biochem. 5, 93–129.PubMedCrossRefGoogle Scholar
  11. 11.
    Iritani, N., Fukuda, E., Inoguchi, K., Tsubosaka, M. and Tashiro, S. (1980) J. Nutr. 110, 1664–1670.PubMedGoogle Scholar
  12. 12.
    Iritani, N., Inoguchi, K., Endo, M., Tsubosaka, M. and Tashiro, S. (1980) Biochim. Biophys. Acta. 618, 378–382.PubMedGoogle Scholar
  13. 13.
    Kromhout, D., Bosschieter, E.B. and Coulander, C.DeL. (1985) N. Eng. J. Med. 312, 1205–1209.CrossRefGoogle Scholar
  14. 14.
    Lakshmanan, M.R. and Ezekiel, M. (1982) Alcoholism: Clin. Exp. Res. 6, 482–486.CrossRefGoogle Scholar
  15. 15.
    Lakshmanan, M.R. and Ezekiel, M. (1985) Alcoholism: Clin. Exp. Res. 9, 327–330.CrossRefGoogle Scholar
  16. 16.
    Lakshmanan, M.R., Felver, M.F. and Veech, R.L. (1980) Alcoholism: Clin. Exp. Res. 4, 361–365.CrossRefGoogle Scholar
  17. 17.
    Lakshmanan, M.R., Muesing, R.A. and LaRosa, J.C. (1981) J. Biol. Chem. 256, 3037–3043.PubMedGoogle Scholar
  18. 18.
    Lakshmanan, M.R., Ezekiel,M., Campbell, B.S. and Muesing, R.A. (1986) Alcoholism: Clin. Exp. Res. 10, 412–418.CrossRefGoogle Scholar
  19. 19.
    Lemmli, U.K. and Favre, M. (1973) J. Mol. Biol. 80, 575–599.CrossRefGoogle Scholar
  20. 20.
    Lieber, CS., Jones, O.P., Mendelson, J. and DeCarli, L.M. (1963) Trans. Assoc. Am. Phys. 76, 289–301.Google Scholar
  21. 21.
    Lopes-Virella, M.F. and Virelia, G.; Rosseneu, M. (1983) In Proceedings of the workshop on apoprotein quantification (K.Lippel, ed), pp. 289–313, NIH, Bethesda, MD.Google Scholar
  22. 22.
    Mahley, R.W. and Holcombe, K.S. (1977) J. Lipid Res. 18, 314-324.PubMedGoogle Scholar
  23. 23.
    Nestel, P.J., Connor, W.E., Reardon, M.R., Connor, S., Wong, S. and Boston, R. (1984) J. Clin. Invest. 74, 82–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Phillipson, B.E., Rothrock, D.W., Connor, W.E., Harris, W.S. and Illingworth, D.R. (1985) N. Eng. J. Med. 312, 1210–1216.CrossRefGoogle Scholar
  25. 25.
    Redgrave, T,G. and Martin, G. (1977) Atherosclerosis 28, 69–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Saynor,R., Verel, D. and Gillot, T. (1984) Atherosclerosis 50, 3–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Scheffe, H. (1959) In: The analysis of variance (Scheffe, H., ed.), pp. 55–83, Wiley, New York.Google Scholar
  28. 28.
    Shelburne, F., Hanks, J., Meyers, W. and Quarfordt, S.H. (1980) J. Clin. Invest. 65, 652–658.PubMedCrossRefGoogle Scholar
  29. 29.
    Sherrill,B.C, Innerarity, T.L. and Mahley, R.L. (1980) J. Biol. Chem. 255, 1804–1807.PubMedGoogle Scholar
  30. 30.
    Windier, E., Kovanen, P.T., Chao, Y-S., Brown, M.S. and Goldstein, J.L. (1980) J. Biol. Chem. 255, 10464–10471.Google Scholar
  31. 31.
    Windler, E., Chao, Y.S. and Havel, R.J. (1980) J. Biol. Chem. 255, 8303–8307.PubMedGoogle Scholar
  32. 32.
    Yang, Y.T. and Williams, M.A. (1978) Biochim. Biophys. Acta. 531, 133–140.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • M. R. Lakshman
    • 1
  • Stuart J. Chirtel
    • 1
  • Laura L. Chambers
    • 1
  1. 1.Lipid Research LaboratoryVA. Medical CenterUSA

Personalised recommendations