Molecular Weight Variation of EBNAs as a Means to Identify Different Epstein-Barr Virus Isolates (EBNotyping)

  • Ingemar Ernberg
  • Erik Danell
  • Jan Willem Gratama
  • MariaAPOosterveer
  • George Klein
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 20)

Abstract

When twenty-nine wild type isolates of Ep-stein—Barr virus (EBV) were tested, as part of a double blind placebo trial of the effect of a-cyclovir on infectious mononucleosis (1), we noted that the molecular weight of EBNA 1 and EBNA 2 varied considerably between the isolates, as measured by immunoblotting (2). Each isolate had its own unique combination of molecular weights. Hennessy et al (3) had already demonstrated that the molecular weight variation of EBNA 1 could be ascribed to variation in length of the internal repeat, IR 3, DNA-sequence, resulting in variable length of the predominant glycine-alanine repeat of EBNA 1. With the more recent identification of the high molecular weight EBNA-proteins, coded from the Bam HI L- and E-fragments (EBNA 3,4 and 6) (4,5,6), the molecular weight variation of these five EBV-proteins together seems to provide a safe measure to identify individual virus isolates (table 1).

Keywords

Placebo Recombination Electrophoresis MgCl Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ernberg, I., Andersson, J. J Gen Virol., 67, 2267–2272, 1986.PubMedCrossRefGoogle Scholar
  2. 2.
    Ernberg, I.et al. Int J Cancer, 38, 729–737, 1986.PubMedCrossRefGoogle Scholar
  3. 3.
    Hennessy et al., Science, 220, 1396–98, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Kallin et al., Proc.Natl.Acad.Sci., 83, 1499–1503, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Hennessy et al., Proc.Natl.Acad.Sci., 83, 5693–5697, 1986.PubMedCrossRefGoogle Scholar
  6. 6.
    Ricksten et al., Proc.Natl. Acad.Sci, 85, 959–999, 1988.CrossRefGoogle Scholar
  7. 7.
    Finke et al.J.Virol., 61, 3870–3878, 1987.PubMedGoogle Scholar
  8. 8.
    Gratama, JW et al., Proc.Natl.Acad.Sci., 85, 8693–8696, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Zerbini, ML and Ernberg,I. J Gen Virol, 64, 539–547, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Laemmli, UK. Nature, 277, 680–685, 1970.CrossRefGoogle Scholar
  11. 11.
    Ernberg et al., to be published.Google Scholar
  12. 12.
    Sculley, TB et al.J Gen Virol, 68, 2069–2078, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Gratama et al., to be published.Google Scholar
  14. 14.
    LiLung, M et al.J Virol., 62, 3862–3866,1988.Google Scholar
  15. 15.
    Katz et al.J.Inf. Dis.,153, 601–604, 1986.CrossRefGoogle Scholar
  16. 16.
    A Katz et al., J.Inf. Dis.,157, 299–308, 1988.CrossRefGoogle Scholar
  17. 17.
    Raab-Traub, N et al.Cell, 47 883–889, 1986.PubMedCrossRefGoogle Scholar
  18. 18.
    A Brown et al.,J.Virol.,62, 962–969, 1988.PubMedGoogle Scholar
  19. 19.
    Linnemann, CC, et al.Lancet, May 6, 964–966, 1978.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Ingemar Ernberg
    • 1
  • Erik Danell
    • 1
  • Jan Willem Gratama
    • 1
  • MariaAPOosterveer
    • 1
  • George Klein
    • 1
  1. 1.Dept of Tumor BiologyKarolinska InstituteStockholmSweden

Personalised recommendations