Advertisement

The Role of Adenosine in Respiratory Physiology

  • Timothy L. Griffiths
  • Stephen T. Holgate
Part of the The Receptors book series (REC)

Abstract

Adenosine is a purine nucleoside, derived predominantly from the cleavage of 5’adenosine monophosphate (AMP) by 5’nucleotidase (Arch and Newsholme, 1978). The nucleoside subserves both intraand extracellular functions, the latter being effected through specific purine receptors. Two types of extracellular purine receptors have been described: A1 and A2, which can, respectively, inhibit and stimulate adenylate cyclase, modifying intracellular levels of the second messenger cyclic 3’,5’-adenosine monophosphate (Londos and Wolff, 1977; Londos, et al., 1980). More recently, however, these receptors have been defined in terms of their agonist pharmacology (Hamprecht and Van Calker, 1985).

Keywords

Mast Cell Adenosine Receptor Histamine Release Carotid Body Sodium Cromoglycate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, H. and Starlinger, H. (1984) Adenosine triphosphate content in the cat carotid body under different arterial O2 and CO2 conditions. Neurosci. Leu. 50, 175–179.Google Scholar
  2. Adams, G. K., III and Lichtenstein, L. (1979) In vitro studies of antigen-induced bronchospasm: Effect of anti-histamine and SRB-A antagonist on response of sensitized guinea pig and human airways to antigen. J. Immunol. 122, 555–562.PubMedGoogle Scholar
  3. Altounyan, R. E. C., Lee, T. B., Rocchiccioli, K. M. S., and Shaw, C. L. (1986) A comparison of the inhibitory effects of nedocromil sodium and sodium cromoglycate on adenosine monophosphate-induced bronhoconstriction in atopic subjects. Eur. J. Respir. Dis. (Suppl.147), 69, 277–279.Google Scholar
  4. Anichkov, S. V. and Belen’kii, M. L. (1963) Pharmacology of the carotid body chemoreceptors. ( Pergamon, Oxford).Google Scholar
  5. Aranda, J. V. and Turmen, T. (1979) Methylxanthines in apnoea of prematurity. Clin. Perinatol. 6, 87–108.PubMedGoogle Scholar
  6. Arch, J. R. S. and Newsholme, E. A. (1978) The control of the metabolism and the hormonal role of adenosine. Essays Biochem. 14, 82–123.PubMedGoogle Scholar
  7. Bellardinelli, L., Shryock, J., West, G. A., Clemo, H. F., DiMarco, J. P., and Berne, R. M. (1984) Effects of adenosine and adenine nucleotides on the atrioventricular node of isolated guinea pig hearts. Circulation 70, 1083–1091.Google Scholar
  8. Benyon, R. C., Church, M. K., and Holgate, S. T. (1984) The effect of methyl-transferase inhibitors on histamine release from human dispersed lung mast cells activated with anti-human IgE and calcium ionophore A23187. Biochem. Pharmacol. 33, 2881–2886.PubMedGoogle Scholar
  9. Berne, R. M. (1980) The role of adenosine in the regulation of coronary blood flow. Circ. Res. 47, 807–813.PubMedGoogle Scholar
  10. Berne, R. M., Rubio, R., and Curnish, R. R. (1974) Release of adenosine from the ischaemic brain: Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ. Res. 35, 262–271.Google Scholar
  11. Berne, R. M., Rubio, R., Dobson, J. G., Jr., and Curnish, R. R. (1971) Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ. Res. 28, Suppl. 1, 115–119.PubMedGoogle Scholar
  12. Biaggioni, I., Olafsson, B., Robertson, R., Hollister, A. S., and Robertson, D. (1986a) Failure of aminophylline to antagonize the haemodynamic and respiratory effects of adenosine boluses. Pflugers Arch. 407, Suppl. 1, S54.Google Scholar
  13. Biaggioni, I., Olafsson, B., Robertson, R., Hollister, A. S., and Robertson, D. (1986b) Characteristics of adenosine-induced stimulation of respiration in man. Pflugers Arch. 407, Suppl. 1, S55.Google Scholar
  14. Biaggioni, I., Olafsson, B., Robertson, R. M., Hollister, A. S., and Robertson, D. (1987) Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circ. Res. 61, 779–786.PubMedGoogle Scholar
  15. Biscoe, T. J., Bradley, G. W., and Purves, M. J. (1970) The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J. Physiol. 208, 99–120.PubMedGoogle Scholar
  16. Bockuran, E. L., Berne, R. M., and Rubio, R. (1975) Release of adenosine and lack of release of ATP from contracting skeletal muscle. Pflugers Arch. 355, 229–241.Google Scholar
  17. Brown, C. M. and Collis, M. G. (1982) Evidence for an A2/R. adenosine receptor in guinea-pig trachea. Br. J. Pharmacol. 76, 381–387.PubMedGoogle Scholar
  18. Bruce, E. N. and Cherniack, N. S. (1987) Central chemoreceptors. J. Appl. Physiol. 62, 389–402.PubMedGoogle Scholar
  19. Bureau, M. A. and Begin, R. (1982) Postnatal maturation of the respiratory response to 02 in awake newborn lambs. J. Appl. Physiol. 52, 428–433.PubMedGoogle Scholar
  20. Burr, D. and Sinclair, J. D. (1988) The effect of adenosine on respiratory chemosensitivity in the awake rat. Respir. Physiol. 72, 47–57.PubMedGoogle Scholar
  21. Buss, D. C., Routledge, P. A., and Watt, A. H. (1986) Respiratory effects of intravenous adenosine in anaesthetised rabbits before and after carotid nerve section. Br. J. Pharmacol. 88, 413 p.Google Scholar
  22. Butcher, R. W. and Sutherland, E. W. (1962) Adenosine 3’,5’-phosphate in biological materials. J. Biol. Chem. 237, 1244–1250.PubMedGoogle Scholar
  23. Chan-Yeung, M. (1977) The effect of SCH 1000 and disodium cromoglycate on exercise-induced asthma. Chest 71, 320–323.PubMedGoogle Scholar
  24. Church, M. K., Holgate, S. T., and Hughes, P. J. (1983) Adenosine inhibits and potentiates IgE-dependent histamine release from human basophils from an A2-receptor mediated mechanism. Br. J. Pharmacol. 80, 719–726.PubMedGoogle Scholar
  25. Church, M. K., Benyon, R. C., Hughes, P. J., Cushley, M. J., Mann, J. S., and Holgate, S. T. (1985) Adenosine as a putative mediator in asthma: Its role in bronchoconstriction and modulation of histamine release from human lung mast cells and basophil leukocytes, in Purines: Pharmacology and Physiological Roles ( Stone, T. W., ed.), Macmillan, London, pp. 175–184.Google Scholar
  26. Coburn, R. F. and Tomita, T. (1973) Evidence for non-adrenergic inhibitory nerves in guinea-pig trachealis muscle. Am. J. Physiol. 224, 1072–1080.Google Scholar
  27. Cotes, J. E. (1979) Control of respiration, in Lung Function Assessment and Application in Medicine, 4th Ed. ( Cotes, J. E., ed.) Blackwell, Oxford, pp. 251–264.Google Scholar
  28. Crimi, N., Palermo, F., Ciccarello, C., Oliven, R., Vancheri, C., Palermo, B., and Mistretta, A. (1989) Effect of theophylline on adenosine-induced bronchoconstriction. Ann. Allergy. 62, 123–127.PubMedGoogle Scholar
  29. Crimi, N., Palermo, F., Vancheri, C., Oliven, R., Distefano, S. M., Polosa, R., and Mistretta, A. (1988) Effect of sodium cromoglycate and nifedipine on adenosine-induced bronchoconstriction. Respiration 53, 74–80.PubMedGoogle Scholar
  30. Cross, K. W. and Oppe, T. E. (1952) Effect of inhalation of high and low concentration of oxygen on the respiration of the premature infant. J. Physiol. 117, 38–55.PubMedGoogle Scholar
  31. Cushley, M. J. and Holgate, S. T. (1985) Adenosine-induced bronchoconstriction in asthma: Role of mast cell-mediator release. J. Allergy Clin. Immunol. 75, 272–278.PubMedGoogle Scholar
  32. Cushley, M. J., Tallant, N., and Holgate, S. T. (1985) The effect of dipyridamole on histamine-and adenosine-induced bronchoconstriction in normal and asthmatic subjects. Eur. J. Respir. Dis. 67, 185–192.PubMedGoogle Scholar
  33. Cushley, M. J., Tattersfield, A. E., and Holgate, S. T. (1983) Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br. J. Clin. Pharmacol. 15, 161–165.PubMedGoogle Scholar
  34. Cushley, M. J., Tattersfield, A. E., and Holgate, S. T. (1984) Adenosine-induced bronchoconstriction in asthma: Antagonism by inhaled theophylline. Am. Rev. Respir. Dis. 129, 380–384.PubMedGoogle Scholar
  35. Dahlen, S.-E., Hansson, G., Heqvist, P., Bjorck, T., and Ganstrom, E. (1983) Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4,134, and E4. Proc. Natl. Acad. Sci. USA 80, 1712–1716.PubMedGoogle Scholar
  36. Daly, J. W. (1982) Adenosine receptors: Targets for future drugs. J. Med. Chem. 25, 197–207.PubMedGoogle Scholar
  37. Darnall, R. A. (1982) Theophylline reduces ventilatory depression in hypoxic newborn piglets. Pediatr. Res. 16, 347A.Google Scholar
  38. Darnall, R. A. (1983) The effect of opioid and adenosine antagonists on hypoxic ventilatory depression in the newborn piglet. Pediatr. Res. 17, 374A.Google Scholar
  39. Davi, M. J., Sankaran, K., Simons, K. J., Simons, F. E. R., Seshia, M. M., and Rigatto, H. (1978) Physiologic changes induced by theophylline in the treatment of apnoea in preterm infants. J. Pediatr. 92, 91–95.PubMedGoogle Scholar
  40. Davis, C., Kannan, M. S., Jones, T. R., and Daniel, E. E. (1982) Control of human airway smooth muscle: In vitro studies. J. Appl. Physiol. 53, 1080–1087.PubMedGoogle Scholar
  41. Dazsun, Z., Rafferty,P.,Richards, R., Summerell, S., and Holgate, S. T. (1989) Airways refractoriness to adenosine 5’-monophosphate after repeated inhalation. J. Allergy Clin. Immunol. 83, 152–158.Google Scholar
  42. DeBoeck, C., Van Reempts, P., Rigatto, H., and Chernick, V. (1983) Endorphins and the ventilatory depression during hypoxia in newborn infants. Pediatr. Res. 17, 374A.Google Scholar
  43. Dobson, G., Rubio, R., and Berne, R. M. (1971) Role of adenine nucleotides, adenosine and inorganic phosphate in the regulation of skeletal muscle blood flow. Circ. Res. 29, 375–384.PubMedGoogle Scholar
  44. Dowell, A. R., Heyman, A., Sieker, H. O., and Tripathy, K. (1965) Effect of aminophylline on respiratory-center sensitivity in Cheyne-Stokes respiratory and in pulmonary emphysema. New Eng. J. Med. 273, 1447–1453.PubMedGoogle Scholar
  45. Drury, A. N. and Szent-Györgyi, A. (1929) The physiological action of adenosine compounds with special reference to their action upon mammalian heart. J. Physiol. 68, 213–237.PubMedGoogle Scholar
  46. Eiser, N. M. and Guz, A. (1982) Effect of atropine on experimentally-induced airway obstruction in man. Bull. Eur. Physiopathol. Respir. 18, 449–460.PubMedGoogle Scholar
  47. Eldridge, F. L., Millhom, D. E., and Kiley, J. P. (1984) Respiratory effects of a longacting analog of adenosine. Brain Res. 301, 273–280.PubMedGoogle Scholar
  48. Eldridge, F. L., Millhom, D. E., and Kiley, J. P. (1985) Antagonism by theophylline respiratory inhibition induced by adenosine. J. Appl. Physiol. 59, 1428–1433.PubMedGoogle Scholar
  49. Eldridge, F. L., Millhom, D. E., Waldrop, T. G., and Kiley, J. P. (1983) Mechanism of respiratory effects of methylxanthines. Respir. Physiol. 53, 239–261.PubMedGoogle Scholar
  50. Ellwood, R. K., Belzberg, A., Hogg, J. C., and Pare, P. D. (1982) Bronchial mucosal permeability in asthma. Am. Rev. Respir. Dis. 125, Suppl. 63.Google Scholar
  51. Eyzaguirre, C. and Zapata, P. (1984) Perspectives in carotid body research. J. Appl. Physiol. 57, 931–957.PubMedGoogle Scholar
  52. Fagenholz, S. A., O’Connell, K., and Shannon, D. C. (1976) Chemoreceptor function and sleep state in apnoea. Pediatrics 58, 31–36.PubMedGoogle Scholar
  53. Finney, M. J. B., Karlsson, J.-A., and Persson, C. G. A. (1985) Effects of bronchoconstrictors and bronchodilators on a novel human small airway preparation. Br. J. Pharmacol. 85, 29–36.PubMedGoogle Scholar
  54. Fish, J. E., Lenfant, C., and Newball, H. H. (1983) In vivo immunopharmacology of the lung, in Immunopharmacology of the Lung, vol 19 of Lung Biology in Health and Disease ( Newball, H. H., ed.), Marcel Dekker, New York, pp. 273–346.Google Scholar
  55. Fredholm, B. B. (1981) Release of adenosine from rat lung by antigen and compound 48/80. Acta. Physiol. Scand. 111, 507–508.PubMedGoogle Scholar
  56. Fredholm, B. B. (1982) Adenosine receptors. Med. Biol. 60, 289–293.PubMedGoogle Scholar
  57. Fredholm, B. B., Brodn, K., and Strandberg, K. (1979) On the mechanism of relaxation of tracheal muscle by theophylline and other cyclic nucleotide phosphodiesterase inhibitors. Acta. Pharmacol. Toxicol. 45, 336–344.Google Scholar
  58. Fuchs, B. D., Gorman, M. W., and Sparks, H. V. (1986) Adenosine release into venous plasma during free flow exercise. Proc. Soc. Exp. Biol. Med. 181, 364–370.PubMedGoogle Scholar
  59. Fuller, R. W., Maxwell, D. L., Conradson, T.-B. G., Dixon, C. M. S., and Barnes, P. J. (1987) Circulatory and respiratory effects of infused adenosine in conscious man. Br. J. Clin. Pharmacol. 24, 309–317.PubMedGoogle Scholar
  60. Gaba, S., Trigui, F., Dujols, P., Godard, P., Michel, F. B., and Prefaut, C. (1986) Compared effects of ATP vs adenosine on pulmonary circulation of COPD. Eur. J. Respir. Dis. (Suppl. 146), 69, 515–522.Google Scholar
  61. Gottlieb, J. E., Peake, M. D., and Sylvester, J. T. (1984) Adenosine and hypoxic pulmonary vasodilatation. Am. J. Physiol. 247, H541 - H547.PubMedGoogle Scholar
  62. Gottlieb, J. E., Peake, M. D., and Sylvester, J. T. (1984) Adenosine and hypoxic pulmonary vasodilatation. Am. J. Physiol. 247, H541 - H547.PubMedGoogle Scholar
  63. Grunstein, M. M., Hazinski, T. A., and Schlueter, M. A. (1981) Respiratory control during hypoxia in newborn rabbits: Implied action of endorphins. J. Appl. Physiol. 51, 122–130.PubMedGoogle Scholar
  64. Hamprecht, B. and Van Calker, D. (1985) Nomenclature of adenosine receptors. Trends Pharmacol. Sci. 6, 153–154.Google Scholar
  65. Hansen, J. T. (1985) Ultrastructure of the primate carotid body: A morphometric study of the glomus cells and nerve endings in the monkey (Macaca fascicularis). J. Neurocytol. 14, 13–32.PubMedGoogle Scholar
  66. Harabin, A. L., Peake, M. D., and Sylvester, J. T. (1981) Effect of severe hypoxia on the pulmonary vascular response to vasoconstrictor agents. J. Appl. Physiol. 50, 561–565.PubMedGoogle Scholar
  67. Hauge, A. (1968) Role of histamine in hypoxic pulmonary hypertension in the rat. I. Blockade or potentiation of endogenous amines, kinins and ATP. Circ. Res. 22, 371–383.PubMedGoogle Scholar
  68. Hauge, A., Lunde, P. K. M., and Waaler, B. A. (1966) Vasoconstriction in isolated blood-perfused rabbit lungs and its inhibition by cresols. Acta. Physiol. Scand. 66, 226–240.PubMedGoogle Scholar
  69. Heath, D. and Kay, J. M. (1976) Respiratory system, in Muir’s Textbook of Pathology, 10th Ed. ( Anderson, J. R., ed.) Edward Arnold, London, pp. 378–449.Google Scholar
  70. Hedner, T., Hedner, J., Jonason, J., and Wessberg, P. (1984) Effects of theophylline on adenosine-induced respiratory depression in the preterm rabbit. Eur. J. Respir. Dis. 65, 153–156.PubMedGoogle Scholar
  71. Hess, A. (1968) Electron microscopic observations of normal and experimental cat carotid bodies, in Arterial Chemoreceptors ( Torrance, R. W., ed.) Blackwell, Oxford and Edinburgh, pp. 51–56.Google Scholar
  72. Hess, A. and Zapata, P. (1972) Innervation of the cat carotid body: Normal and experimental studies. Fed. Proc. 31, 1365–1382.PubMedGoogle Scholar
  73. Hogg, J. C., Pare, P. D., Boucher, R. C., Michoud, M. C., Guerzon, G., and Moroz, L. (1977) Pathologic abnormalities in asthma, in Asthma, Physiology, Immunopharmacology and Treatment ( Lichtenstein, L. M., Austen, K. F., and Simon, A. S., eds.) Academic, New York, pp. 1–19.Google Scholar
  74. Holgate, S. T. and Mann, J. S. (1984) Release of adenosine and its metabolites from human leukocytes activated with the calcium ionophore A23187. Br. J. Pharmacol. 82, 262 p.Google Scholar
  75. Holgate, S. T., Lewis, R. A., and Austen, K. F. (1980a) Role of adenylate cyclase in immunologic release of mediators from rat mast cells: Agonist and antagonist effects of purine-and ribose-modified adenosine analogs. Proc. Natl. Acad. Sci. USA 77, 6800–6804.PubMedGoogle Scholar
  76. Holgate, S. T., Lewis, R. A., and Austen, K. F. (1980b) 3’,5’-cyclic adenosine monophosphate-dependent protein kinase of the rat serosal mast cell and its immunologic activation. J. Immunol. 124, 2093–2099.Google Scholar
  77. Holgate, S. T., Cushley, M. J., Mann, J. S., Hughes, P., and Church, M. K. (1986) The action of purines on human airways. Arch. Int. Pharmacodyn. 280, Suppl., 240–252.PubMedGoogle Scholar
  78. Holgate, S. T., Cushley, M. J., Rafferty, P., Beasley, R., Phillips, G., and Church, M. K. (1987) The bronchoconstrictor activity of adenosine in asthma, in Topics and Perspectives in Adenosine Research ( Gerlach, S. and Becker, B. F., ed.), Springer-Verlag, Berlin and Heidelberg, pp. 614–624.Google Scholar
  79. Honey, R. M., Ritchie, W. T., and Thomson, W. A. R. (1930) The action of adenosine upon human heart. PE Q. J. Med. 23, 485–489.Google Scholar
  80. Hughes, P. J., Holgate, S. T., and Church, M. K. (1984) Adenosine inhibits and potentiates IgE-dependent histamine release from human lung mast cells by an A2-purinoceptor mediated mechanism. Biochem. Pharmacol. 33, 3847–3852.PubMedGoogle Scholar
  81. Ishizaka, T. and Ishizaka, K. (1984) Activation of mast cells for mediator release through IgE receptors. Prog. Allergy 34, 188–235.PubMedGoogle Scholar
  82. Jarisch, A., Landgren, A., Neil, E., and Zotterman, Y. (1952) Impulse activity in the caritod sinus nerve following intra-carotid injection of potassium chloride, veratrine, sodium citrate, adenosine-triphosphate and a-dinitrophenol. Acta. Physiol. Scand. 25, 195–211.PubMedGoogle Scholar
  83. Jarisch, A., Landgren, A., Neil, E., and Zotterman, Y. (1952) Impulse activity in the caritod sinus nerve following intra-carotid injection of potassium chloride, veratrine, sodium citrate, adenosine-triphosphate and a-dinitrophenol. Acta. Physiol. Scand. 25, 195–211.PubMedGoogle Scholar
  84. Jeffrey, P. and Corni, B. (1984) Structural analysis of the respiratory tract, in Immunology of the Lung and Upper Respiratory Tract ( Bienenstock, J., ed.), McGraw Hill, New York and Toronto, pp. 1–27.Google Scholar
  85. Jobsis, F. F. (1977) What is a molecular oxygen sensor? What is a transduction process? Adv. Exp. Med. Biol. 78, 3–18.PubMedGoogle Scholar
  86. Kaliner, M. A. (1980) Mast-cell derived mediators and bronchial asthma, in Airway Reactivity, Mechanisms and Clinical Relevance ( Hargreave, F. E., ed.), Astra, Mississauga, Ontario, pp. 175–187.Google Scholar
  87. Karisson, J.-A., Kjellin, G., and Persson, C. G. A. (1982) Effect on tracheal smooth muscle of adenosine and methylxanthines and their interaction. J. Pharm. Pharmacol. 34, 788–793.Google Scholar
  88. Klabund, R. E. (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur. J. Pharmacol. 93, 21–26.Google Scholar
  89. Knauer, K. A., Lichtenstein, L. M., Adkinson, N. F., Jr., and Fish, J. E. (1981) Platelet activation during antigen-induced airway reactions in asthmatic subjects. New Engl. J. Med. 304, 1404–1407.PubMedGoogle Scholar
  90. Konche, H. and Kienecker, E.-W. (1977) Sympathetic innervation of the carotid bifurication in the rabbit and cat: Blood vessels, carotid body and carotid sinus. A fluorescence and electron microscopic study. Cell Tissue Res. 184, 103–112.Google Scholar
  91. Kondo, H., Iwanaga, T., and Nakajima, T. (1982) Immunocytochemical study on the localization of neuron-specific enolase and S-100 protein in the carotid body of rats. Cell Tissue Res. 227, 291 295.Google Scholar
  92. Lagercrantz, H., Yamamoto, Y., Fredholmm, B. B., Prabhakar, N. R., and von Euler, C. (1984) Adenosine analogues depress ventilation in rabbit neonates. Theophylline stimulation of respiration via adenosine receptors? Pediatr. Res. 18, 387–390.PubMedGoogle Scholar
  93. Lahiri, S. (1977) Introductory remarks: Oxygen linked response of carotid chemoreceptors. Adv. Exp. Med. Biol. 78, 185–202.PubMedGoogle Scholar
  94. Lahiri, S., Smatresk, N. J., and Mulligan, E. (1983) Responses of peripheral chemoreceptors to natural stimuli, in Physiology of the Peripheral Arterial Chemoreceptors (Acker, H. and O’Regan, R. G., eds.), Elsevier BV, Amsterdam, pp. 221–256.Google Scholar
  95. Lakshminarayan, S., Sahn, S. A., and Weil, J. V. (1978) Effect of aminophylline on ventilatory responses in normal man. Am. Rev. Respir. Dis. 117, 33–38.PubMedGoogle Scholar
  96. Lamb, D. and Lumsden, A. (1982) Intra-epithelial mast cells in human airway epithelium: Evidence for smoking-induced changes in their frequency. Thorax 37, 334–342.PubMedGoogle Scholar
  97. Lande, P. K. M., Waaler, B. A., and Walloe, L. (1968) The inhibitory effect of various phenols upon ATP-induced vasoconstriction in isolated perfused rabbit lungs. Acta Physiol. Scand. 72, 331–337.Google Scholar
  98. Langer, I. (1967) The bronchoconstrictor action of propranolol aerosol in asthmatic subjects. J. Physiol. (Lond.) 190, 41 pp.Google Scholar
  99. Larsson, K. and Sollevi, A. (1988) Influence of infused adenosine on bronchial tone and bronchial reactivity in asthma. Chest 93, 280–284.PubMedGoogle Scholar
  100. Lee, L.-Y. and Milhom, H. T., Jr. (1975) Central ventilatory responses to 02 and CO2 at three levels of carotid chemoreceptor stimulation. Respir. Physiol. 25, 319–333.PubMedGoogle Scholar
  101. Lewis, R. A. and Austen, K. F. (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature 293, 103–108.PubMedGoogle Scholar
  102. Lewis, R. A., Soter, N. A., Diamond, P. T., Austen, K. F., Oates, J. A., and Roberts J. L., II (1982) Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. 129, 1627–1631.PubMedGoogle Scholar
  103. Londos, C. and Wolff, J. (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl. Acad. Sci. USA 74, 5482–5486.PubMedGoogle Scholar
  104. Londos, C., Cooper, D. M. F., and Wolff, J. (1980) Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551–2554.PubMedGoogle Scholar
  105. Lugliani, R., Whipp, B. J., Seard, C., and Wasserman, K. (1971) Effect of bilateral carotid-body resection on ventilatory control at rest and during exercise in man. New Engl. J. Med 285, 1105–1111.PubMedGoogle Scholar
  106. McCormack, D. G., Clarke, B., and Barnes, P. J. (1989) Characterization of the adenosine receptors in human pulmonary arteries. Am. J. Physiol. H41 - H46.Google Scholar
  107. McDonald, D. M. and Haskell, A. (1983) Morphology of connections between arterioles and capillaries in the rat carotid body analysed by reconstructing serial sections, in The Peripheral Arterial Chemoreceptors ( Pallot, D. J., ed.), Croom Helm, London and Canberra, pp. 195–206.Google Scholar
  108. McDonald, D. M. and Mitchell, R. A. (1981) The neural pathway involved in “efferent inhibition” of chemoreceptors in the cat carotid body. J. Comp. Neurol. 201, 457–476.PubMedGoogle Scholar
  109. McFadden, E. R. (1984) Pathogenesis of Asthma. J. Allergy Clin. Immunol. 73, 413–424.PubMedGoogle Scholar
  110. McNeil, R. S. and Ingram, C. G. (1966) Effect of propranolol on ventilatory function. Am. J. Cardiol. 18, 473–475.Google Scholar
  111. McQueen (1983) Pharmacological aspects of putative transmitters in the carotid body, in Physiology of the Peripheral Arterial Chemoreceptors ( Acker, H. and O’Regan, R. G., eds.), Elsevier, Amsterdam, pp. 149–195.Google Scholar
  112. McQueen, D. S. and Ribeiro, J. A. (1981a) Effect of adenosine on carotid chemoreceptor activity in the cat. Br. J. Pharmacol. 74, 129–136.Google Scholar
  113. McQueen, D. S. and Ribeiro, J. A. (1981b) Excitatory action of adenosine on cat carotid chemoreceptors. J. Physiol. 315, 38 pp.Google Scholar
  114. McQueen, D. S. and Ribeiro, J. A. (1983) On the specificity and type of receptor involved in carotid body chemoreceptor activation by adenosine in the cat. Br. J. Pharmacol. 80, 347–354.PubMedGoogle Scholar
  115. McQueen, D. S. and Ribeiro, J. A. (1986) Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine. Br. J. Pharmacol. 88, 615–620.PubMedGoogle Scholar
  116. Mann, J. S. and Holgate, S. T. (1985) Specific antagonism of adenosine-induced bronchoconstriction in asthma by oral theophylline. Br. J. Clin. Pharmacol. 19, 685–692.PubMedGoogle Scholar
  117. Mann, J. S., Cushley, M. J., and Holgate, S. T. (1985) Adenosine induced bronchoconstriction in asthma: Role of parasympathetic stimulation and adrenergic inhibition. Am. Rev. Respir. Dis. 132, 1–6.PubMedGoogle Scholar
  118. Mann, J. S., Holgate, S. T., Renwick, A. G., and Cushley, M. J. (1986a) Airway effects of purine nucleosides and nucleotides and release with bronchial provocation in asthma. J. Appl. Physiol. 61, 1667–1676.Google Scholar
  119. Mann, J. S., Renwick, A. G., and Holgate, S. T. (1986b) Release of adenosine and its metabolites from activated human leukocytes. Clin. Sci. 70, 460–468.Google Scholar
  120. Mannix, S. E., Bye, P., Hughes, J. M. B., Cover, D., and Davies, E. E. (1984) Effect of posture on ventilatory response to steady-state hypoxia and hypercapnia. Respir. Physiol. 58, 87–99.PubMedGoogle Scholar
  121. Marquardt, D. L., Gruber, H. E., and Wasserman, S. I. (1984a) Adenosine release from stimulated mast cells. Proc. Natl. Acad. Sci. USA 81, 6192–6196.PubMedGoogle Scholar
  122. Marquardt, D. L., Parker, C. W., and Sullivan, T. J. (1978) Potentiation of mast cell mediator release by adenosine. J. Immunol. 120, 871–878.PubMedGoogle Scholar
  123. Marquardt, D. L., Walker, L. L., and Wasserman, S. I. (1984b) Adenosine receptors on mouse bone marrow-derived mast cells: Functional significance and regulation by animophylline. J. Immunol. 133, 932–937.PubMedGoogle Scholar
  124. Maxwell, D. L. (1986) Effect of adenosine infusion on resting ventilation in man. J. Physiol. 374, 23 pp.Google Scholar
  125. Maxwell, D. L., Fuller, R. W., Nolop, K. B., Dixon, C. M. S., and Hughes, J. M. B. (1986) Effects of adenosine on ventilatory responses to hypoxia and hypercapnia in humans. J. Appl. Physiol. 61, 1762–1766.PubMedGoogle Scholar
  126. Maxwell, D. L., Fuller, R. W., Conradson, T.-B., Dixon, C. M. S., Aber, V., Hughes, J. M. B., and Barnes, P. J. (1987a) Contrasting effects of two xanthines, theophylline and enprofylline, on the cardio-respiratory stimulation of infused adenosine in man. Acta. Physiol. Scand. 131, 459–465.PubMedGoogle Scholar
  127. Maxwell, D. L., Fuller, R. W., Conradson, T.-B., Dixon, C. M. S., Hughes, J. M. B., and Barnes, P. J. (1987b) Oxygen and theophylline reduce the cardio-respiratory effects of adenosine infusion in man. Clin. Sci. 72, 13 pp.Google Scholar
  128. Mentzer, R. M., Jr., Rubio, R., and Berne, R. M. (1975) Release of adenosine by hypoxic canine lung tissue and its possible role in pulmonary circulation. Am. J. Physiol. 229, 1625–1631.PubMedGoogle Scholar
  129. Milic-Emili, J. and Grunstein, M. M. (1976) Drive and timing components of ventilation. Chest 70, Suppl. 131–133.Google Scholar
  130. Millhorn, D. E., Eldridge, F. L., Kiley, J. P., and Waldrop, T. G. (1984) Prolonged inhibition of respiration following acute hypoxia in glomectomized cats. Respir. Physiol. 57, 331–340.Google Scholar
  131. Mir, A. K., Pallot, D. J., and Nahorski, S. R. (1983) Biogenic amine-stimulated cyclic adenosine 3’,5’-monophosphate formation in the rat carotid body. J. Neurochem. 41, 663–669.PubMedGoogle Scholar
  132. Monteiro, E. C. and Ribeiro, J. A. (1987) Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 143–148.Google Scholar
  133. Moss, I. R., Denavit-Saubie, M., Eldridge, F. L., Gillis, R. A., Herkenham, M., and Lahiri, S. (1986) Neuromodulators and transmitters in respiratory control. Fed. Proc. 45, 2133–2147.PubMedGoogle Scholar
  134. Mulligan, E. and Lahiri, S. (1982) Separation of carotid body chemoreceptor responses to 02 and CO2 by oligomycin and by antimycin A. Am. J. Physiol. 242, C200 - C206.PubMedGoogle Scholar
  135. Nadel, J. A. (1973) Neurophysiologic aspects of asthma, in Asthma, Physiology, Immunopharmacology, and Treatment ( Austen, K. F. and Lichtenstein, L. M., eds.), Academic, New York, pp. 29–38.Google Scholar
  136. Obeso, A., Almaraz, L., and Gonzalez, C. (1987) ATP content in the cat carotid body under different experimental conditions. Support for the metabolic hypothesis, in Chemoreceptors inRespiratory Control ( Ribeiro, J. A. and Pallot, D. J., eds.), Croom Helm, London and Sydney, pp. 78–90.Google Scholar
  137. Orehek, J., Gayrard, P., Grimaud, C., and Charpin, J. (1977) Bronchial response to inhaled prostaglandin F2. in patients with common or aspirin-sensitive asthma. J. Allergy Clin. Immunol. 59, 414–419.PubMedGoogle Scholar
  138. Peake, M. D.,Harabin,A. L., Brennan, N. J., and Sylvester, J. T. (1981) Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J. Appl. Physiol. 51, 1214–1219.PubMedGoogle Scholar
  139. Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R. (1979) Effects of adenosine and adenosine nucleotides on synaptic transmission in the cerebral cortex. Can. J. Physiol. Pharmacol. 57, 1289–1312.PubMedGoogle Scholar
  140. Proctor, K. G. and Duling, B. R. (1982) Adenosine and free-flow functional hyperaemia in striated muscle. Am. J. Physiol. 242, H688 - H697.PubMedGoogle Scholar
  141. Rebuck, A. S. and Campbell, E. J. M. (1974) A clinical method for assessing the ventilatory response to hypoxia. Am. Rev. Respir. Dis. 109, 345–350.PubMedGoogle Scholar
  142. Reeves, J. T., Jokl, P., Merida, J., and Leathers, J. E. (1967) Pulmonary vascular obstruction following administration of high-energy nucleotides. J. Appl. Physiol. 22, 475–479.PubMedGoogle Scholar
  143. Reid, P. G., Watt, A. H., Routledge, P. A., and Smith, A. P. (1987) Intravenous infusion of adenosine but not inosine stimulates respiration in man. Br. J. Clin. Pharmacol. 23, 331–338.PubMedGoogle Scholar
  144. Ribeiro, J. A. and McQueen, D. S. (1984) Effects of purines on carotid chemoreceptors, in Peripheral Arterial Chemoreceptors (Pallot, D. J., ed.), Oxford University Press, Oxford, pp. 383–390.Google Scholar
  145. Richardson, J. B. (1981) Nonadrenergic inhibitory innervation of the lung. Lung 159, 315–322.PubMedGoogle Scholar
  146. Richardson, P. S., and Sterling, G. M. (1969) Effects of ß-adrenergic receptor blockade on airway conductance and lung volume in normal and asthmatic subjects. Br. Med. J. 3, 143–145.PubMedGoogle Scholar
  147. Richmond, G. H. (1949) Action of caffeine and aminophylline as respiratory stimulants in man. J. Appl. Physiol. 2, 16–23.PubMedGoogle Scholar
  148. Rigatto, H., Brady, J. P., and de la Torre Verduzco, R. (1975) Chemoreceptor reflexes in pretenn infants: 1. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics 55, 604–613.PubMedGoogle Scholar
  149. Robinson, C. and Holgate, S. T. (1985) Mast cell-dependent inflammatory mediators and their putative role in bronchial asthma. Clin. Sci. 68, 103–112.PubMedGoogle Scholar
  150. Routledge, P. A. and Watt, A. H. (1986) Effect of aminophylline on respiratory stimulation and heart rate changes produced by intravenous adenosine boluses in man. Br. J. Pharmacol. 89, 711 p.Google Scholar
  151. Rubio, R., Berne, R. M., and Dobson, J. G., Jr. (1973) Sites of adenosine production in cardiac and skeletal muscle. Am. J. Physiol. 225, 938–953.PubMedGoogle Scholar
  152. Rubio, R., Berne, R. M., Bockman, E. L., and Cumish, R. R. (1975) Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol. 228, 1896–1902.PubMedGoogle Scholar
  153. Schleimer, R. P., MacGlashan, D. W., Jr., Schulman, E. S., Peters, S. P., Adkinson, N. F., Jr., Newball, H. H., Adams, G. K., III, and Lichtenstein, L. M. (1982) Effects of glucocorticoids on mediator release from human basophils and mast cells. Fed. Proc. 41, 487.Google Scholar
  154. Sheppard, D., Rizk, N. W., Boushey, H. A., and Bethel, R. A. (1983) Mechanism of cough and bronchoconstriction induced by distilled water aerosol. Am. Rev. Respir. Dis. 127, 691–694.PubMedGoogle Scholar
  155. Sheppard, D., Epstein, J., Holtzman, M. J., Nadel, J. A., and Boushey, H. A. (1982) Dose-dependent inhibition of cold air-induced bronchoconstriction by atropine. J. Appl. Physiol. 53, 169–174.PubMedGoogle Scholar
  156. Sheppard, D., Wong, W. S., Uehara, C. F., Nadel, J. A., and Boushey, H. A. (1980) Lower threshold and greater bronchomotor responsiveness of asthmatic subjects to sulfur dioxide. Am. Rev. Respir. Dis. 122, 873–878.PubMedGoogle Scholar
  157. Smith, P., Jago, R., and Heath, D. (1982) Anatomical variation and quantative histology of the normal and enlarged carotid body. J. Pathol. 137, 287–304.PubMedGoogle Scholar
  158. Smits, P., Schonten, J., and Thien, T. H. (1987) Respiratory stimulant effects of adenosine in man after caffeine and enprofylline. Br. J. Clin. Pharmacol. 24, 816–819.PubMedGoogle Scholar
  159. Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W. (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. USA 78, 3260–3264.PubMedGoogle Scholar
  160. Stone, T. W. (1984) Purine receptors classification: A point for discussion. Trends. Pharmacol. Sci. 5, 492, 493.Google Scholar
  161. Tenney, S.M. and Brooks, J. G., III. (1966) Carotid bodies, stimulus interaction, and ventilatory control in unanesthetized goats. Respir. Physiol. I, 211–224.Google Scholar
  162. Watt, A. H. and Routledge, P. A. (1985) Adenosine stimulates respiration in man. Br. J. Clin. Pharmacol. 20, 503–506.PubMedGoogle Scholar
  163. Watt, A. H. and Routledge, P.A. (1987) Dipyridamol modulation of heart rate and ventilatory changes produced by intravenous adenosine boluses in man. Br. J. Clin. Pharmacol. 23, 632–633.Google Scholar
  164. Watt, A. H., Reid, P. G., Stephens, M. R., and Routledge, P. A. (1987) Adenosine-induced respiratory stimulation in man depends on site of infusion. Evidence for an action on the carotid body? Br. J. Clin. Pharmacol. 23, 486–490.PubMedGoogle Scholar
  165. Watt, J. G., Dumke, P. R., and Comm, J.H., Jr. (1943) Effects of inhalation of 100 percent and 14 percent oxygen upon respiration of unanaesthetized dogs before and after chemoreceptor denervation. Am. J. Physiol. 138, 61–67.Google Scholar
  166. Wechsler, R. L., Kleiss, L. M., and Kety, S. S. (1950) The effects of intravenously administered aminophylline on cerebral circulation and metabolism in man. J. Clin. Invest. 29, 28–30.PubMedGoogle Scholar
  167. Wessberg, P., Hedner, J., Hedner, T., Person, B., and Jonasen, J. (1985) Adenosine mechanisms in the regulation of breathing in the rat. Eur. J. Pharmaco1. 106, 59–67.Google Scholar
  168. Wetzel, R. C. and Sylvester, J.T. (1983) Gender differences in hypoxic vascular response of isolated sheep lungs. J. Appl. Physiol. 55, 100–104.PubMedGoogle Scholar
  169. Wiklund, N. P., Cederqvist, B., Matsuda, H., and Gustafsson, L. E. (1987) Adenosine can stimulate pulmonary artery. Acta Physiol. Scand. 131, 477–478.PubMedGoogle Scholar
  170. Winn, H. R., Rubio, R., and Berne, R. M. (1981) Brain adenosine concentration during hypoxia in rats. Am. J. Physiol. 241, H235 - H242.PubMedGoogle Scholar
  171. Woodrum, D. E., Standaert, T. A., Maryock, D. E., and Guthrie, R. D. (1981) Hypoxic ventilatory response in the newborn monkey. Pediatr. Res. 15, 367–370.PubMedGoogle Scholar
  172. Wyman, R. J. (1977) Neural generation of the breathing rhythm. Annu. Rev. Physiol. 39, 417–448.PubMedGoogle Scholar
  173. Zapata, P., Stenaas, L. J., and Eyzaguirre, C. (1976) Axon regeneration following a lesion of the carotid nerve: Electrophysiological and ultrastructural observations. Brain Res. 113, 235–253.PubMedGoogle Scholar
  174. Zetterstrom, T., Vernet, L., Ungerstedt, U., Tossman, U., Jonzon, B., and Fredholm, B. B. (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci. Leu. 29, 111–115.Google Scholar

Copyright information

© The Humana Press Inc. 1990

Authors and Affiliations

  • Timothy L. Griffiths
  • Stephen T. Holgate

There are no affiliations available

Personalised recommendations