Skip to main content

Kinetics of Anion Transport

  • Chapter
The Red Cell Membrane

Part of the book series: Contemporary Biomedicine ((CB,volume 10))

Abstract

This chapter will deal primarily with the question of what we can learn about the red-cell anion transport system from kinetic studies, that is, measurements of ion fluxes under different conditions and in the presence of various inhibitors. It is important to recognize, however, that one of the chief advantages of the red-cell anion transport system has been the availability of structural data on the transport protein as well as kinetic data. Largely for reasons of brevity, this chapter will focus on only a few subjects that, in my opinion, will be important in linking the kinetic information with structural studies (see Chapter 8) to develop a molecular model for the transport process. For a broader overview of the kinetics of transport, the reader is referred to several comprehensive reviews (Macara and Cantley, 1983; Knauf, 1979, 1986; Passow, 1986; Fröhlich and Gunn, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennekou, P. (1985) Chloride net permeability of the human red cell—a comparison with the exchange permeability. Acta Physiol. Scand. 124 (Suppl. 542) 154.

    Google Scholar 

  • Brahm, J. (1977) Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70 283–306.

    Article  PubMed  CAS  Google Scholar 

  • Brazy, P. C. and Gunn, R. B. (1976) Furosemide inhibition of chloride transport in human red blood cells. J. Gen. Physiol. 68 583–599.

    Article  PubMed  CAS  Google Scholar 

  • Brock, C. J., Tanner, M. J. A., and Kempf, C. (1983) The human erythrocyte anion transport protein: Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Biochem. J. 213 577–586.

    PubMed  CAS  Google Scholar 

  • Canfield, V. A. and Macey, R. I. (1984) Anion exchange in human erythrocytes has a large activation volume. Biochim. Biophys. Acta 778 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Cass, A. and Dalmark, M. (1973) Equilibrium dialysis of ions in nystatin-treated red cells. Nature New Biology 244 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, W. W. (1963) The kinetics of enzyme-catalysed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67 104–137.

    Article  PubMed  CAS  Google Scholar 

  • Cousin, J. L. and Motais, R. (1979) Inhibition of anion permeability by am-phiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein. J. Membr. Biol. 47 125–153.

    Google Scholar 

  • Dalmark, M. (1975) Chloride transport in human red cells. J. Physiol. (Lond.) 250 39–64.

    CAS  Google Scholar 

  • Dalmark, M. (1976) Effects of halides and bicarbonate on chloride transport in human red blood cells. J. Gen. Physiol. 67 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks, G. L., Steck, T. L., and Wallach, D. F. H. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10 2606–2617.

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J. and Chan, S. I. (1985) Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. J. Biol. Chem. 260 9537–9544.

    PubMed  CAS  Google Scholar 

  • Falke, J. J. and Chan, S. I. (1986a) Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. Biochemistry 25 7888–7894.

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J. and Chan, S. I. (1986b) Molecular mechanisms of band 3 inhibitors. 2. Channel blockers. Biochemistry 25 7895–7898.

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J. and Chan, S.I. (1986c) Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors. Biochemistry 25 7899–7906.

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J., Kanes, K. J., and Chan, S. I. (1985) The kinetic equation for the chloride transport cycle of band 3. A35C1 and 37C1 NMR study. J. Biol. Chem. 260 9545–9551.

    PubMed  CAS  Google Scholar 

  • Falke, J. J., Pace, R. J., and Chan, S. I. (1984a) Chloride binding to the anion transport binding sites of band 3. A35C1 NMR study. J. Biol. Chem. 259 6472–6480.

    PubMed  CAS  Google Scholar 

  • Falke, J. J., Pace, R. J., and Chan, S. I. (1984b) Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors. A35C1 NMR study. J. Biol. Chem. 259 6481–6491.

    PubMed  CAS  Google Scholar 

  • Freedman, J. C. and Novak, T. S. (1987) Chloride conductance of human red blood cells at varied EK. Biophys. J. 51 565a.

    Google Scholar 

  • Fröhlich, O. (1982) The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J. Membr.Biol. 65 111–123.

    Article  PubMed  Google Scholar 

  • Fröhlich, O. (1984) Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes. J. Gen. Physiol. 84 877–893.

    Article  PubMed  Google Scholar 

  • Fröhlich, O. and Gunn, R. B. (1986) Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim. Biophys. Acta 864 169–194.

    PubMed  Google Scholar 

  • Fröhlich, O. and King, P. A. (1987) Mechanisms of anion net transport in the human erythrocyte. J. Gen. Physiol. 90 6a.

    Google Scholar 

  • Fröhlich, O. and King, P. A. (1988) Mechanism of net anion transport in the human erythrocyte, in Cell Physiology of Blood (Gunn, R. B. and Parker, J. C, eds.), Rockefeller University Press, New York, pp. 181–192.

    Google Scholar 

  • Fröhlich, O., Bain ,D., and Weimer ,L. (1989) The effect of phloretin and DNDS on chloride net transport in erythrocytes. Submitted for publication.

    Google Scholar 

  • Fröhlich, O., Leibson, C, and Gunn, R. B. (1983) Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site. J. Gen. Physiol. 81 127–152.

    Article  PubMed  Google Scholar 

  • Furuya, W., Tarshis, T., Law, F.-Y., and Knauf, P. A. (1984) Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83 657–681.

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg, H., O’Connor, S. E., and Grisham, C. M. (1981) Evidence from electron paramagnetic resonance for function-related conformation changes in the anion-transport protein of human erythrocytes. Eur. J. Biochem. 114 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Glasstone, S. and Lewis, D. (1960) Elements of Physical Chemistry, Second Edition (Van Nostrand, Princeton).

    Google Scholar 

  • Goldman, D. E. (1943) Potential, impedance and rectification in membranes. J. Gen. Physiol. 27 37–60.

    Article  PubMed  CAS  Google Scholar 

  • Grinstein, S., McCulloch, L., and Rothstein, A. (1979) Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J. Gen. Physiol. 73 493–514.

    Article  PubMed  CAS  Google Scholar 

  • Grygorczyk, R., Schwarz, W., and Passow, H. (1987) Potential dependence of the “electrically silent” anion exchange across the plasma membrane of Xenopus oocytes mediated by the band-3 protein of mouse red blood cells. J. Membr. Biol. 99 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti, G. (1986) Membrane proteins: structure, arrangement, and disposition in the membrane, in Physiology of Membrane Disorders, Second Edition (Andreoli, T. E., Hoffman, J. F., Fanestil, D. D., and Schultz, S. G., eds.), Plenum, New York, pp. 45–55.

    Google Scholar 

  • Gunn, R. B. (1979) Transport of anions across red cell membranes, in Transport Across Biological Membranes, Vol. II (Giebisch, G., Tosteson, D., and Ussing, H. H., eds.), Springer-Verlag, Heidelberg, pp. 59–80.

    Google Scholar 

  • Gunn, R. B. and Fröhlich, O. (1979) Asymmetry in the mechanism for anion exchange in human red blood cell membranes: Evidence for reciprocating sites that react with one transported anion at a time. J. Gen. Physiol. 74 351–374.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, R. B., and Fröhlich, O. (1980) The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann. N.Y. Acad. Sci. 341 384–393.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, R. B. and Fröhlich, O. (1982) Arguments in support of a single transport site on each anion transporter in human red cells, in Chloride Transport in Biological Membranes (Zadunaisky, J., ed.), Academic Press, New York, pp. 33–59.

    Google Scholar 

  • Gunn, R. B., Dalmark, M., Tosteson, D. C., and Wieth, J. O. (1973) Characteristics of chloride transport in human red blood cells. J Gen. Physiol. 61 185–206.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, R. B., Fröhlich, O., Macintyre, J. D., and Low, P. S. (1979) Calcium modification of the anion transport mechanism in red blood cells. Biophys. J. 25 106a.

    Google Scholar 

  • Hautmann, M. and Schnell, K. F. (1985) Concentration dependence of the chloride self exchange and homoexchange fluxes in human red cell ghosts. Pflügers Arch. 405 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J. F., and Laris, P. C. (1974) Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. (Lond.) 239 519–552.

    CAS  Google Scholar 

  • Hunter, M. J. (1971) A quantitative estimate of the non-exchange restricted chloride permeability of the human red cell. J. Physiol. (Lond.) 218 49P–50P.

    CAS  Google Scholar 

  • Jans, A. W. H., Krijnen, E. S., Luig, J., and Kinne, R. K. H. (1987) A 31P-NMR study on the recovery of intracellular pH in LLC-PK1/CI4 cells from intracellular alkalinization. Biochim. Biophys. Acta 931 326–334.

    Article  PubMed  CAS  Google Scholar 

  • Jay, D. and Cantley, L. (1986) Structural aspects of the red cell anion exchange protein. Ann. Rev. Biochem. 55, 511–538.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. (1982) Stoichiometry of a half-turnover of band 3, the chloride-transport protein of human erythrocytes. J. Gen. Physiol. 79 169–185.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. (1987) Functional roles of carboxyl groups in human red blood cell band 3. J. Gen. Physiol. 90 5a.

    Google Scholar 

  • Jennings, M. L. and Adams, M. F. (1981) Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20 7118–7123.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. and A1-Rhaiyel, S. (1988) Modification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter. J. Gen. Physiol. 92 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. and Anderson, M. P. (1987) Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J. Biol. Chem. 262 1691–1697.

    PubMed  CAS  Google Scholar 

  • Jones, G. S. and Knauf, P. A. (1985) Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J. Gen. Physiol. 86 721–738.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, J. H., Pring, M., and Passow, H. (1983) Band 3 protein-mediated anion conductance of the red cell membrane: Slippage versus ionic diffusion. FEBS Lett. 156 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, J. H., Scorah, K., Fasold, H., and Passow, H. (1976) Sidedness of the inhibitory action of disulfonic acids on chloride equilibrium exchange and net transport across the human erythrocyte membrane. FEBS Lett. 62 182–185.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A. (1979) Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr. Topics Membr. Trans. 12 249–363.

    CAS  Google Scholar 

  • Knauf, P. A. (1986) Anion transport in erythrocytes, in Membrane Transport Disorders, 2nd Edition (Andreoli, T. E., Schultz, S. G., Hoffman, J. F., and Fanestil, D. D., eds.), Plenum, New York, pp. 191–220.

    Google Scholar 

  • Knauf, P. A. and Brahm, J. (1986) Asymmetry of the human red blood cell anion transport system at 38°C. Biophys. J. 49 579a.

    Article  Google Scholar 

  • Knauf, P. A. and Brahm, J. (1989) Functional asymmetry of the anion exchange protein, capnophorin: Effects on substrate and inhibitor binding. Methods Enzymol. 173 432–453.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A. and Mann, N. (1984) Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J. Gen. Physiol 83 703–725.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A. and Mann, N. A. (1986) Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system. Am. J. Physiol. 251 (Cell Physiol. 20), C1-C9.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A. and Spinelli, L. J. (1987) Asymmetry of the Cl-loaded forms of the human erythrocyte anion exchange protein, band 3. J. Gen. Physiol. 90 24a.

    Google Scholar 

  • Knauf, P. A. and Spinelli, L. J. (1988) Evidence that external NIP-taurine, NAP-taurine and iodide inhibit red blood cell anion exchange by binding to the same site on band 3. Biophys. J. 53 532a.

    Google Scholar 

  • Knauf, P. A., Fuhrmann, G. F., Rothstein, S., and Rothstein, A. (1977) The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69 363–386.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Law, F.-Y., and Marchant, P. J. (1983a) Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J. Gen. Physiol. 81 95–126.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Mann, N., and Kalwas, J. E. (1983b) Net chloride transport across the human erythrocyte membrane into low chloride media: Evidence against a slippage mechanism. Biophys. J. 41 164a.

    Google Scholar 

  • Knauf, P. A., Mann, N. A., and Penikas, J. (1985) Noncompetitive partial inhibition of human red cell chloride exchange by eosin (E) and eosin maleimide (EM). The Physiologist 28 294.

    Google Scholar 

  • Knauf, P. A., Law, F.-Y., Tarshis, T., and Furuya, W. (1984) Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system: Evidence for intrinsic asymmetry. J. Gen. Physiol. 83 683–701.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Mann, N., Brahm, J., and Bjerrum, P. (1986a) Asymmetry in iodide affinities of external and internal-facing red cell anion transport sites. Fed. Proc. 45 1005.

    Google Scholar 

  • Knauf, P. A., Brahm, J., Bjerrum, P., and Mann, N. (1986b) Kinetic asymmetry of the human erythrocyte anion exchange system, in Proceedings 8th School on Biophysics of Membrane Transport Agricultural University of Wroclaw, Wroclaw, Poland (Kuczera, J. and Przestalski, S., eds.), vol. 1, pp. 157–169.

    Google Scholar 

  • Knauf, P. A., Mann, N. A., Kalwas, J. E., Spinelli, L. J., and Ramjeesingh, M. (1987a) Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system. Am. J. Physiol. 253 (Cell Physiol. 22), C652-C661.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., Mann, N. A., and Spinelli, L. J. (1987b) Effects of transport site conformation and anion binding on the affinity of the human red blood cell anion transport protein for niflumic acid (NA). Biophys. J. 51 566a.

    Google Scholar 

  • Knauf, P. A., Spinelli, L. J., and Mann, N. A. (1987c) Affinities of flufenamic acid (FA) for different conformations of the human erythrocyte anion transport protein. Fed. Proc. 46 534.

    Google Scholar 

  • Knauf, P. A., Ship, S., Breuer, W., McCulloch, L., and Rothstein, A. (1978) Asymmetry of the red cell anion exchange system: different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. J. Gen. Physiol. 72 607–630.

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P. (1987) Voltage dependence of sodium-calcium exchange: predictions from kinetic models. J. Membr. Biol. 99 1–11.

    Article  PubMed  Google Scholar 

  • Läuger, P. and Jauch, P. (1986) Microscopic description of voltage effects on ion-driven cotransport systems. J. Membr. Biol. 91 275–284.

    Article  PubMed  Google Scholar 

  • Low, P. S. (1978) Specific cation modulation of anion transport across the human erythrocyte membrane. Biochim. Biophys. Acta 514 264–273.

    Article  PubMed  CAS  Google Scholar 

  • Macara, L G. and Cantley, L. C. (1983) The structure and function of band 3, in Cell Membranes: Methods and Reviews (Elson, E., Frazier, W., and Glaser, L., eds.), Plenum Press, New York, pp. 41–87.

    Google Scholar 

  • Macara, I. G., Kuo, S., and Cantley, L. C. (1983) Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J. Biol. Chem. 258 1785–1792.

    PubMed  CAS  Google Scholar 

  • Milanick, M. A. and Gunn, R. B. (1982) Proton-sulfate co-transport: Mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J. Gen. Physiol. 79 87–113.

    Article  PubMed  CAS  Google Scholar 

  • Milanick, M. A. and Gunn, R. B. (1986) Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites? Am. J. Physiol. 250 (Cell Physiol. 19), C955-C969.

    PubMed  CAS  Google Scholar 

  • Passow, H. (1986) Molecular aspects of the band 3 protein-mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Pharmacol. 103 61–203.

    PubMed  CAS  Google Scholar 

  • Passow, H., Fasold, H., Gärtner, E. M., Legrum, B., Ruffing, W., and Zaki, L. (1980) Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann. N.Y. Acad. Sci. 341 361–383.

    Article  PubMed  CAS  Google Scholar 

  • Patlak, C. S. (1957) Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19 209–235.

    Article  Google Scholar 

  • Rao, A., Martin, P., Reithmeier, R. A. F., and Cantley, L. C. (1979) Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry 18 4505–4516.

    Article  PubMed  CAS  Google Scholar 

  • Restrepo, D., Kozody, D. J., and Knauf, P. A. (1988) pH homeostasis in promyelocytic leukemic HL60 cells. J. Gen. Physiol. 92 489–507.

    Article  PubMed  CAS  Google Scholar 

  • Salhany, J. M. and Rauenbuehler, P. B. (1983) Kinetics and mechanism of erythrocyte anion exchange. J. Biol. Chem. 258 245–249.

    PubMed  CAS  Google Scholar 

  • Schnell, K. F. and Besl, E. (1984) Concentration dependence of the unidirectional sulfate and phosphate flux in human red cell ghosts under selfex-change and under homoexchange conditions. Pflügers Arch. 402 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Schnell, K. F., Besl, E., and V. der Mosel, R. (1981) Phosphate transport in human RBC: Concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. J. Membr. Biol.. 61 173–192.

    Article  PubMed  CAS  Google Scholar 

  • Shami, Y., Carver, J., Ship, S., and Rothstein, A. (1977) Inhibition of Cl- binding to anion transport protein of the red blood cell by DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonic acid) measured by (35Cl)NMR. Biochim. Biophys. Res. Comm. 76 429–436.

    Article  CAS  Google Scholar 

  • Simchowitz, L. and Roos, A. (1985) Regulation of intracellular pH in human neutrophils. J. Gen. Physiol. 85 443–470.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, A. K. (1960) Red cell membrane structure and ion transport. J. Gen. Physiol. 43 (Suppl 2), 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. (1985) Simple model can explain self-inhibition of red cell anion exchange. Biophys. J. 47 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O. and Bjerrum, P. J. (1983) Transport and modifier sites in cap-nophorin, the anion transport protein of the erythrocyte membrane, in Structure and Function of Membrane Proteins (Quagliariello, E., and Palmieri, F., eds.), Elsevier, Amsterdam, pp. 95–106.

    Google Scholar 

  • Wieth, J. O. and Bjerrum, P. J. (1982) Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 79 253–282.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O. and Brahm, J. (1985) Cellular anion transport, in The Kidney: Physiology and Pathophysiology, Chapter 4 (Seldin, D. W. and Giebisch, G., eds.), Raven Press, New York, pp. 49–89.

    Google Scholar 

  • Wieth, J. O., Brahm, J., and Funder, J. (1980) Transport and interactions of anions and protons in the red blood cell membrane. Ann. N.Y. Acad. Sci. 341 394–418.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O., Bjerrum, P. J., and Borders, Jr., C. L. (1982a) Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent. J. Gen. Physiol. 79 283–312.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O., Bjerrum, P. J., Brahm, J., and Andersen, O. S. (1982b) The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange. Tokai J. Exp. Clin. Med. 7 (Suppl), 91–101.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

Knauf, P.A. (1989). Kinetics of Anion Transport. In: Raess, B.U., Tunnicliff, G. (eds) The Red Cell Membrane. Contemporary Biomedicine, vol 10. Humana Press. https://doi.org/10.1007/978-1-4612-4500-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4500-1_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8848-0

  • Online ISBN: 978-1-4612-4500-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics