Need and Applications of Integrated Red Cell Models

  • Virgilio L. Lew
  • Carol J. Freeman
  • Olga E. Ortiz
  • Robert M. Bookchin
Part of the Contemporary Biomedicine book series (CB, volume 10)


The behavior of a cell within a tissue, organ, or organism is the result of direct or indirect interactions among diverse, functional molecular units. The methodological advances of the last few decades have provided much information on the identity and function of a large variety of cell components, and on the chemical structure and operation of isolated, purified, or reconstituted molecular entities. If the understanding of a cell, organ, and organismal physiology is ever to be derived from the integration of elemental functions into progressively higher order mathematical representations, a general approach to integrated modeling must first be explored.


Sickle Cell Anemia Human Erythrocyte Diffusible Anion Anion Permeability Cell Dehydration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, G. S. (1929) Thermodynamic analysis of the observed osmotic pressures of protein salts in solutions of finite concentration. Proc. R. Soc. London A 126 16–24.CrossRefGoogle Scholar
  2. Bookchin, R. M., Lew, D. J., Balazs, T., Ueda, Y., and Lew, V. L. (1984) Dehydration and delayed proton equilibria of red cells suspended in isosmo-tic buffers. Implications for studies of sickle cells. J. Lab. Clin. Med. 104 855–866.PubMedGoogle Scholar
  3. Brugnara, C. and Tosteson, D. C. (1987) Cell volume, K transport, and cell density in human erythrocytes. Am. J. Physiol. 252 C269–C276.PubMedGoogle Scholar
  4. Brugnara, C., Kopin, A. S., Bunn, H. F., and Tosteson, D. C. (1984) Electrolyte composition and equilibrium in hemoglobin CC red blood cells. Trans. Assoc. Am. Phys. 97 104–112.PubMedGoogle Scholar
  5. Brugnara, C, Kopin, A. S., Bunn, H. F., and Tosteson, D. C. (1985) Regulation of cation content and cell volume in erythrocytes from patients with homozygous hemoglobin C disease, J. Clin. Invest. 75 1608–1617.PubMedCrossRefGoogle Scholar
  6. Cala, P. M. (1980) Volume regulation by Amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways. J. Gen. Physiol. 76 683–708.PubMedCrossRefGoogle Scholar
  7. Cala, P. M. (1983a) Volume regulation by red blood cells: Mechanisms of ion transport. Mol. Physiol. 4 33–52.Google Scholar
  8. Cala, P. M. (1983b) Cell volume regulation by Amphiuma red blood cells. J. Gen. Physiol. 82 761–784.PubMedCrossRefGoogle Scholar
  9. Canessa, M., Spalvins, A., and Nagel R. L. (1986) Volume-dependent and NEM-stimulated K+,Cl- transport is elevated in oxygenated SS, SC and CC human red cells. FEBS Lett. 200 197–202.PubMedCrossRefGoogle Scholar
  10. Canessa, M., Fabry, M. E., Blumenfeld, N., and Nagel, R. L. (1987) Volume-stimulated, Cl- -dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J. Membr. Biol. 97 97–105.PubMedCrossRefGoogle Scholar
  11. Cass, A. and Dalmark, M. (1973) Equilibrium dialysis of ions in nystatin-treated cells. Nature New Biol 244 47–49.PubMedCrossRefGoogle Scholar
  12. Civan, M. M. and Bookman, R. J. (1982) Transepithelial Na+ transport and the intracellular fluids: A computer study. J. Membr. Biol. 65 63–80.PubMedCrossRefGoogle Scholar
  13. Clark, M. R., Ungar, R. C., and Shohet, S. B. (1978) Monovalent cation composition and ATP and lipid content of irreversibly sickled cells. Blood 51 1169–1178.PubMedGoogle Scholar
  14. Clarkson, D. R. and Moore, E. M. (1976) Reticulocyte size in nutritional anemias. Blood 48 669–677.PubMedGoogle Scholar
  15. Dalmark, M. (1975) Chloride and water distribution in human red cells. J. Physiol. 250 65–84.PubMedGoogle Scholar
  16. Deuticke, B., Duhm, J., and Dierkesmann, R. (1971) Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular pH. Pflugers Arch. 326 15–34.PubMedCrossRefGoogle Scholar
  17. Dick, D. A. T. (1959) Osmotic properties of living cells. Int. Rev. Cytol. 8 387–448.PubMedCrossRefGoogle Scholar
  18. Duhm, J. (1976) Influence of 2,3-diphosphoglycerate on the buffering properties of human blood. Role of the red cell membrane. Pflugers Arch. 363 61–67.PubMedCrossRefGoogle Scholar
  19. Dunham, P. B. and Ellory, J. C. (1981) Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride. J. Physiol. 318 511–530.PubMedGoogle Scholar
  20. Dunham, P. B., Stewart, G. W., and Ellory, J. C. (1980) Chloride-activated passive potassium transport in human erythrocytes. Proc. Nat. Acad. Sci. USA 77 1711–1715.PubMedCrossRefGoogle Scholar
  21. Fitzsimons, E. J. and Sendroy, J., Jr. (1961) Distribution of electrolytes in human blood. J. Biol. Chem. 236 1595–1601.Google Scholar
  22. Fortes, P. A. G. (1977) Anion movements in red cells. Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.), Academic, New York, pp. 175–195.Google Scholar
  23. Freedman, J. C. and Hoffman, J. F. (1979) Ionic and osmotic equilibria of human red blood cells treated with nystatin. J. Gen. Physiol. 74 157–185.PubMedCrossRefGoogle Scholar
  24. Freeman, C. J., Bookchin, R. M., Ortiz, O. E., and Lew, V. L. (1987) K-permeabilized human red cells lose an alkaline, hypertonic fluid containing an excess K over diffusible anions. J. Membr. Biol. 96 235–242.PubMedCrossRefGoogle Scholar
  25. Funder, J. and Wieth, J. O. (1966) Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68 234–235.CrossRefGoogle Scholar
  26. Gardos, G. (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30 653–654.PubMedCrossRefGoogle Scholar
  27. Glader, B. E., Fortier, N., Albala, M. M., and Nathan, D. G. (1974) Congenital hemolytic anemia associated with dehydrated erythrocytes and increased potassium loss. N. Eng. J. Med. 291 491–496.CrossRefGoogle Scholar
  28. Glader, B. E., Lux, S. E., Muller-Soyano, A., Platt, O. S., Propper, R. D., and Nathan, D. G. (1978) Energy reserve and cation composition of irreversibly sickled cells in vivo. Br. J. Haematol. 40 527–532.PubMedCrossRefGoogle Scholar
  29. Glynn, I. M., and Warner, A. E. (1972) Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug’s antiarrhythmic effect. Br. J. Pharmacol. 44 271–278.PubMedGoogle Scholar
  30. Haas, M., Schmidt, W. F., III, and McManus, T. J. (1982) Catecholamine- stimulated ion transport in duck red cells. J. Gen. Physiol. 80 125–147.PubMedCrossRefGoogle Scholar
  31. Hall, A. C. and Ellory, J. C. (1986) Evidence for the presence of volume-sensitive KCl transport in “young” human red cells. Biochim. Biophys. Acta 858 317–320.PubMedCrossRefGoogle Scholar
  32. Harris, E. J. and Maizels, M. (1952) Distribution of ions in suspensions of human erythrocytes. J. Physiol. 118 40–53.PubMedGoogle Scholar
  33. Hill, A. V. (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J. Physiol. 40 iv.Google Scholar
  34. Hladky, S. B. and Rink, T. J. (1977) pH equilibrium across the red cell membrane. Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.), Academic, London, pp. 115–135.Google Scholar
  35. Hodgkin, A. L. and Huxley, A. F. (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loglio. J. Physiol. 116 449–472.PubMedGoogle Scholar
  36. Hunter, M. J. (1977) Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. 268 35–49.PubMedGoogle Scholar
  37. Jacobs, M. H. and Stewart, D. R. (1942) The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte. J. Gen. Physiol. 25 539–552.PubMedCrossRefGoogle Scholar
  38. Jacobs, M. H. and Stewart, D. R. (1947) Osmotic properties of the erythrocyte. XII. Eonic and osmotic equilibria with a complex external solution. J. Cell. Comp. Physiol. 30 79–103.CrossRefGoogle Scholar
  39. Kaperonis, A. A., Bertles, J. F., and Chien, S. (1979) Variability of intracellular pH within individual populations of SS and AA erythrocytes. Br. J. Haemal. 43 391–400.CrossRefGoogle Scholar
  40. Killman, S -A. (1964) On the size of normal human reticulocytes. Acta Med. Scand. 176 529–533.CrossRefGoogle Scholar
  41. Larsen, E. H. and Rasmussen, B. E. (1985) A mathematical model of amphibian skin epithelium with two types of transporting cellular units. Pflugers Arch. 405(Suppl 1) S50–S58.PubMedCrossRefGoogle Scholar
  42. Lauf, P. K. (1983) Thiol-dependent passive K/Cl transport in sheep red cells: II. Loss of Cl- and N-ethylmaleimide sensitivity in maturing high K+ cells. J. Membr. Biol. 73 247–256.PubMedCrossRefGoogle Scholar
  43. Lauf, P. K. (1985a) K+:Cl- cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J. Membr. Biol. 88 1–13.PubMedCrossRefGoogle Scholar
  44. Lauf, P. K. (1985b) Passive K+ -Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations. Am. J. Physiol. 249 C271–C278.PubMedGoogle Scholar
  45. Lauf, P. K. and Bauer, J. (1987) Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocytes. Biochem. Biophys. Res. Comm. 144 849–855.PubMedCrossRefGoogle Scholar
  46. Lauf, P. K. and Theg, B. E. (1980) A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem. Biophys. Res. Comm. 92 1422–1428.PubMedCrossRefGoogle Scholar
  47. Lauf, P. K., Adragna, N. C., and Garay, R. P. (1984) Activation by N-eth- ylmaleimide of a latent K+ -Cl- flux in human red blood cells. Am. J. Physiol. 246 C385–C390.PubMedGoogle Scholar
  48. Lew, V. L., and Beauge, L. A. (1979) Passive cation fluxes in the red cell membranes. Transport across Biological Membranes, vol. II., (Giebisch, G., Tosteson, D. C, and Ussing, H. H., eds.), Springer-Verlag, Berlin, pp. 85–115.Google Scholar
  49. Lew, V. L. and Bookchin, R. M. (1986) Volume, pH and ion content regulation in human red cells: analysis of transient behavior with an intregated model. J. Membr. Biol. 92 57–74.PubMedCrossRefGoogle Scholar
  50. Lew, V. L. and Garcia-Sancho, J. (1985) Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells. Cell Calcium 6 15–23.PubMedCrossRefGoogle Scholar
  51. Lew, V. L., Ferreira, H. G., and Moura, T. (1979) The behavior of transporting epithelial cells. I. Computer analysis of a basic model. Proc. R. Soc. London B 206 53–83.CrossRefGoogle Scholar
  52. Maizels, M. and Paterson, J. L. H. (1937) CCVII. Base binding in erythrocytes. Biochem. J. 31 1642–1656.PubMedGoogle Scholar
  53. McConaghey, P. D. and Maizels, M. (1961) The osmotic coefficients of haemoglobin in red cells under varying conditions. J. Physiol. 155 28–45.PubMedGoogle Scholar
  54. Rapoport, S. M. (1986) The Reticulocyte CRC Press, Boca Raton, p. 35.Google Scholar
  55. Solomon, A. K., Toon, M. R., and Dix, J. A. (1986) Osmotic properties of human red cells. J. Membr. Biol. 91 259–273.PubMedCrossRefGoogle Scholar
  56. Tosteson, D. C. (1964) Regulation of cell volume by sodium and potassium transport. The Cellular Functions of Membrane Transport (Hoffman, J. F., ed.), Prentice Hall, Englewood Cliffs, pp. 3–22.Google Scholar
  57. Tosteson, D. C. and Hoffman, J. F. (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44 169–194.PubMedCrossRefGoogle Scholar
  58. Van Slyke, D. D., Wu, H., and McLean, F. C. (1923) Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood. J. Biol. Chem. 56 765–849.Google Scholar
  59. Warburg, E. J. (1922) XXII. Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions. A contribution to the theory of the equation of Lawrence J. Henderson and K. A. Hasselbalch. Biochem. J. 16 153–340.Google Scholar
  60. Werner, A. and Heinrich, R. (1985) A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary “in vivo” state and time dependent variations under blood preservation conditions. Biomed. Biochim. Acta 44 185–212.PubMedGoogle Scholar
  61. Wiley, J. S. and Shaller, C. C. (1977) Selective loss of calcium permeability on maturation of reticulocytes. J. Clin. Invest. 59 1113–1119.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Virgilio L. Lew
  • Carol J. Freeman
  • Olga E. Ortiz
  • Robert M. Bookchin

There are no affiliations available

Personalised recommendations