Skip to main content

Irreversible Modification of the Anion Transporter

  • Chapter
The Red Cell Membrane

Part of the book series: Contemporary Biomedicine ((CB,volume 10))

Abstract

The major fraction of CO2 formed by metabolism is transformed to bicarbonate ions in the blood. The catalyzed hydration of CO2 takes place inside red cells, and the major fraction of the produced bicarbonate is then transported across the membrane in exchange for extracellular chloride. This transfer ensures that the “CO2” transporting capacity of the blood is fully utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, O. S., Bjerrum, P. J., Borders, C. L., Jr., Broda, T., and Wieth, J. O. (1983) Essential carboxyl groups in the anion exchange protein of human red blood cell membranes. Biophysical J. 41 164a.

    Google Scholar 

  • Banks, T. E., Blossey, B. K., and Shafer, J. A. (1969) Inactivation of α-chymotrypsin by a water-soluble carbodiimide. J. Biol. Chem. 244 6323–6333.

    PubMed  CAS  Google Scholar 

  • Barzilay, M., Ship, S., and Cabantchik, ZI. (1979) Anion transport in red blood cells I. Chemical properties of anion recognition sites as revealed by structure-activity relationships of aromatic sulfonic acids. Membr. Biochem. 2 227–254.

    Article  PubMed  CAS  Google Scholar 

  • Berghout, A., Raida, M., Romano, L., and Passow, H. (1985) pH dependence of phosphate transport across the red blod cell membrane after modification by dansyl chloride. Biochim. Biophys. Acta 815 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum, P. J. (1983) Identification and location of amino acid residues essential for anion transport in red cell membranes, in Structure and Function of Membrane Proteins (Quagliariello, E. and Palmieri F., eds.), Elsevier Science Publishers, Amsterdam, pp. 107–115.

    Google Scholar 

  • Bjerrum, P. J. (1986) Titration and chemical modification of the anion transport system in red cells, in Eight School on Biophysics of Membrane Transport, School Proceedings, Vol. 1 Wroclaw, Poland, Publ. Co. Argicultural University, pp. 9–29.

    Google Scholar 

  • Bjerrum, P. J. (1989) Chemical modification of the anion transport system with phenylglyoxal, (Fleicher, S. B.,) Meth. Enzymol. 173 466–494.

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum, P. J., Tranum-Jensen, J., and Møllgård, K. (1980) Morphology of erythrocyte membranes and their transport function following aggregation of membrane proteins, in Membrane Transport in Erythrocytes, (Lassen, U. V., Ussing, H. H., and Wieth, J. O., eds.), Munksgaard, Copenhagen (Alfred Benzon symposium 14), pp. 51–72.

    Google Scholar 

  • Bjerrum, P. J., Wieth, J. O., and Borders, C. L., Jr. (1983) Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. J. Gen. Physiol. 81 453–184.

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum, P. J., Andersen, O. S., Borders, C. L., Jr., and Wieth, J. O. (1989) Functional carboxyl groups in the red cell anion transport protein. J. Gen. Physiol. 93 813–839.

    Article  PubMed  CAS  Google Scholar 

  • Bodlaender, P., Feinstein, G., and Shaw, E. (1969) The use of isoxazolium salts for carboxyl group modification in proteins. Biochemistry 8 4941–4949.

    Article  PubMed  CAS  Google Scholar 

  • Borders, C. L., Jr. and Riordan, J. R. (1975) An essential arginyl residue at the nucleotide binding site of creatine kinase. Biochemistry 14 4699–4704.

    Article  PubMed  CAS  Google Scholar 

  • Brahm, J. (1977) Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70 283–306.

    Article  PubMed  CAS  Google Scholar 

  • Brock, C. J. and Tanner, M. J. A. (1986) The human erythrocyte anion-transport protein. Further amino acid sequence from the integral membrane domain homologous with the murine protein. Biochem. J. 235 899–901.

    PubMed  CAS  Google Scholar 

  • Brock, C. J., Tanner, M. J. A., and Kempf, C. (1983) The human erythrocyte anion transport protein. Partial amino acid sequence, confirmation and possible molecular mechanism for anion exchange. Biochem. J. 213 577–586.

    PubMed  CAS  Google Scholar 

  • Cabantchik, Z. I. and Rothstein, A. (1974) Membrane protein related to anion permeability of human red blood cells I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Memb. Biol. 15 207–226.

    Article  CAS  Google Scholar 

  • Canfield, V. A. and Macey, R. I. (1984) Anion exchange in human erythrocytes has a large activation volume. Biochim. Biophys. Acta 778 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Carraway, K. L. and Koshland, D. E., Jr. (1968) Reaction of tyrosine residues in proteins with carbodiimide reagents. Biochim. Biophys. Acta 160 272–274.

    PubMed  CAS  Google Scholar 

  • Carraway, K. L. and Koshland, D. E., Jr. (1972) Carbodiimide modification of proteins. Meth. Enzymol. 25 616–632.

    Article  CAS  Google Scholar 

  • Chan, V. W. F., Jorgensen, A. M., and Borders, C. L., Jr. (1988) Inactivation of bovine thrombin by water-soluble carbodiimides: Evidence for an essential carboxyl group with pK a of 5.51 Biochem. Biophys. Res. Commun. 151 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Cherung, S. T. and Fonda, M. L. (1979a) Kinetics of the inactivation of Escherichia coli glutamate apodecarboxylase by phenylglyoxal. Arch. Biochem. Biophys. 198 541–547.

    Article  Google Scholar 

  • Cherung, S. T. and Fonda, M. L. (1979b) Reaction of phenylglyoxal with arginine. The effect of buffers and pH. Biochem. Biophys. Res. Commun. 90 940–947.

    Article  Google Scholar 

  • Chiba, T., Sato, Y., and Suzuki, Y. (1986) Amino acid residues complexed with eosin 5-isothiocyanate in band 3 protein of the human erythrocyte. Biochim. Biophys. Acta 858 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Christen, P. and Riordan, J. F. (1970) Syncatalytic modification of a functional tyrosyl residue in aspartate aminotransferase. Biochemistry 9 3025–3033.

    Article  PubMed  CAS  Google Scholar 

  • Cohn, E. J. and Edsall, J. T. (1943) Proteins, Amino Acids and Peptides as Ions and Dipolar Ions (Reinhold Publishing Co. New York).

    Google Scholar 

  • Cousin, J. L. and Motais, R. (1982a) Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds I. Determination of the flufenemate-binding site by proteolytic dissection of the band 3 protein. Biochim. Biophys. Acta 687 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Cousin, J. L. and Motais, R. (1982b) Inhibition of anion transport in red blood cell by anionic amphiphilic compounds II. chemical properties of the flufenemate-binding site on the band 3 protein. Biochem. Biophys. Acta 687 156–164.

    Article  PubMed  CAS  Google Scholar 

  • Craik, J. D. and Reithmeier, R. A. T. (1984) Inhibition of phosphate transport in human erythrocytes by water-soluble carbodiimides. Biochim. Biophys. Acta 778 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Craik, J. D. and Reithmeier, R. A. T. (1985) Reversible and irreversible inhibition of phosphate transport in human erythrocytes by a membrane impermeant carbodiimide. J. Biol. Chem. 260 2404–2408.

    PubMed  CAS  Google Scholar 

  • Craik, J. D., Grouden, K., and Reithmeier, R. A. T. (1986) Inhibition of phosphate transport in human erythrocytes by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1). Biochim. Biophys. Acta 856 602–609.

    Article  PubMed  CAS  Google Scholar 

  • Dalmark, M. and Wieth, J. O. (1972) Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J. Physiol. (Lond) 244 583–610.

    Google Scholar 

  • Deuticke, B. (1977) Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev. Physiol. Biochem. Pharmacol. 78, 1–97.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D. (1984) Three-dimensional structure of membrane and surface proteins. Ann. Rev. Biochem. 53 595–623.

    Article  PubMed  CAS  Google Scholar 

  • Elder, J. H. and Alexander, F. (1982) Endo-beta-N-acetylglucosaminidase F: Endoglycosidase from Flavobacterium meningosepticum that cleaves both high mannose and complex glucoproteins. Proc. Natl. Acad. Sci. USA 79 4540–4544.

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks, G., Steck, T. L., and Wallach, D. F. H. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10 2606–2617.

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J. and Chan, S. I. (1985) Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35Cl NMR study. J. Biol. Chem. 260 9537–9544.

    PubMed  CAS  Google Scholar 

  • Falke, J. J., Kanes, K. J., and Chan, S. I. (1985) The minimal structure containing the band 3 anion transport site. A 35Cl NMR study. J. Biol. Chem. 260 13294–13303.

    PubMed  CAS  Google Scholar 

  • Falke, J. J., Pace, R. J., and Chan, S. I. (1984) Chloride binding to the anion transport binding sites of band 3. A 35Cl NMR study. J. Biol. Chem. 259 6472–6480.

    PubMed  CAS  Google Scholar 

  • Frölich, O. (1982) The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J. Memb. Biol. 65 111–123.

    Article  Google Scholar 

  • Frölich, O. and Gunn, R. B. (1987) Interactions of inhibitors and anion transporter of human erythrocyte. Am. J. Physiol. 252 C153-C162.

    Google Scholar 

  • Fukuda, M. N., Fukuda, M., and Hakamori, S. (1979) Cell surface modification by endo-beta-galactosidase. J. Biol. Chem. 254 5458–5465.

    PubMed  CAS  Google Scholar 

  • Funder, J. and Wieth, J. O. (1976) Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J. Physiol. 262 679–698.

    PubMed  CAS  Google Scholar 

  • Funder, J., Tosteson, D. C, and Wieth, J. O. (1978) Effects of bicarbonate on lithium transport in human red cells. J. Gen. Physiol. 71 721–746.

    Article  PubMed  CAS  Google Scholar 

  • Furuya, W., Tarshis, T., Few, F. Y., and Knauf, P. A. (1984) Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS: Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83 657–681.

    Article  PubMed  CAS  Google Scholar 

  • George, A. L., Jr. and Borders, C. L., Jr. (1979) Essential carboxyl residues in yeast enolase. Biochem. Biophys. Res. Comm. 87 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Gilson, M. K. and Honig, BH. (1987) Calculation of electrostatic potentials in an enzyme active site. Nature 330 84–86.

    Article  PubMed  CAS  Google Scholar 

  • Golovtchenko-Matsumoto, A. M. and Osawa, T. (1980) Heterogeneity of band 3, the major intrinsic protein of human erythrocyte membranes. Studies by crossed Immunoelectrophoresis and crossed immuno-affinoelectrophoresis. J.Biochem. 87 847–854.

    PubMed  CAS  Google Scholar 

  • Grisham, C. M. (1979) Characterization of essential arginyl residues in sheep kidney (Na+ + K +)-ATPase. Biochim. Biophys. Res. Comm. 88 229–236.

    Article  CAS  Google Scholar 

  • Gunn, R. B. and Fröhlich, O. (1979) Assymetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J. Gen. Physiol. 74 351–374.

    Article  PubMed  CAS  Google Scholar 

  • Halstrap, A. P. (1976) Transport of pyruvate and lactate in human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-indipendent carrier. Biochem. J. 156 193–207.

    Google Scholar 

  • Hautmann, M. and Schnell, K. F. (1985) Concentration dependence of the chloride self-exchange and homo exchange fluxes in human red cell ghosts. Pflügers Arch. 405 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Hoare, D. G. and Koshland, D. E., Jr. (1966) A procedure for the selective modification of carboxyl groups in proteins. J. Am. Chem. Soc. 88 2057–2059.

    Article  CAS  Google Scholar 

  • Hoare, D. G. and Koshland, D. E., Jr. (1967) A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J. Biol. Chem. 242 2447–2453.

    PubMed  CAS  Google Scholar 

  • Hunter, M. J. (1971) A quantitative estimate of the non exchange-resticted chloride permeability of the human red cell. J. Physiol. 218 49–50.

    Google Scholar 

  • Hunter, M. J. (1977) Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. 268 35–49.

    PubMed  CAS  Google Scholar 

  • Jay, D. and Cantley, L. (1986) Structural aspects of the red cell anion exchange protein. Ann. Rev. Biochem. 55 511–538.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. (1976) Proton fluxes associated with erythrocyte membrane anion exchange. J. Memb. Biol. 28 187–205.

    Article  CAS  Google Scholar 

  • Jennings, M. L. (1980) Apparent “recruitment” of SO4 transport sites by the Cl gradient across the human erythrocyte membrane, in Membrane Transport in Erythrocytes (Lassen, U. V., Ussing, H. H., and Wieth, J. O., eds.), Munksgaard, Copenhagen (Alfred Benzon Symposium 14) pp. 450–463.

    Google Scholar 

  • Jennings, J. M. (1982a) Reductive methylation of the two H2DIDS-binding lysine residues of band 3, the human erythrocyte anion transport protein. J. Biol. Chem. 257 7554–7559.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L. (1982b) Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J. Gen. Physiol. 79, 169–185.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. and Adams, M. F. (1981) Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20 7118–7123.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. and Al-Rhaiyel, S. (1988). Modification of carboxyl groups that appears to cross the permeability barrier in the red blood cell anion transporter. J. Gen. Physiol. 92 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L. and Anderson, M. P. (1987) Chemical modifiaction and label-ing of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J. Biol. Chem. 262 1691–1697.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L. and Nicknish, J. S. (1985) Localization of a site of intermolecular cross-linking in human red blood cell band 3 protein. J. Biol. Chem. 260 5472–5479.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L., Adams-Lackey, M., and Denney, G. H. (1984) Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J. Biol. Chem. 259 4652–4660.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L., Anderson, M. P., and Mornaghan, R. (1986) Monoclonal antibodies agains human erythrocyte band 3 protein. J. Biol. Chem. 261 9002–9010.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L., Mornaghan, R., Douglas, S. M., and Nicknish, J. S. (1985) Functions of extracellular lysine residues in the human erythrocyte anion transport protein. J. Gen. Physiol. 86 653–669.

    Article  PubMed  CAS  Google Scholar 

  • Kazarinoff, M. N. and Snell, EE. (1976) D-serine dehydratase from Escherichia Coli. Essential arginine residue at the 5-phosphate binding site. J. Biol. Chem. 251 6179–6182.

    PubMed  CAS  Google Scholar 

  • Kempf, C, Brock, C, Sigrist, H., Tanner, M. J. A., and Zahler, P. (1981) Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. Biochim. Biophys. Acta 641 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Khorana, H. G. (1953) The chemistry of carbodiimides. Chem. Revs. 53 145–166.

    Article  CAS  Google Scholar 

  • Khorana, H. G. (1961) Some Recent Developments in the Chemistry of Phosphate Esters of Biological Interest (John Wiley & Sons, New York).

    Google Scholar 

  • Knauf, P. A. (1979) Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr. Top. Memb. Transp. 12 249–363.

    CAS  Google Scholar 

  • Knauf, P. A. (1986) Anion transport in eyrthrocytes, in Membrane Transport Disorders (Andreoli, T., Hoffmann, J. F., Schultz, S. G., Fanenstil, D. D, eds.) Plenumm, New York, pp. 191–220.

    Google Scholar 

  • Knauf, P. A. and Law, F.-Y. (1980) Relation of net anion flow to the anion exchange system, in Membrane Transport in Erythrocytes (Lassen, U. V., Ussing, H. H., and Wieth, J. O., eds.) Munksgaard, Copenhagen, (Alfred Benson Symposium 14), pp. 488–493.

    Google Scholar 

  • Knauf, P. A. and Mann, N. A. (1984) Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J. Gen. Physiol. 83 703–725.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Brahm, J., Bjerrum, P. J., and Mann, N. (1986) Kinetic asymmetry of the human erythrocyte anion exchange system, in Eighth School on Biophysics of Membrane Transport, School Proceedings vol. 1, Wroclaw, Poland, Publ. Co. Agricultural University, pp. 157–169.

    Google Scholar 

  • Knauf, P. A., Law, F.-Y., Tarshis, T., and Furuya, W. (1984) Effects of the transport site conformation on the binding of external Nap-taurine to the human erythrocyte anion exchange system. J. Gen. Physiol. 83 683–701.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R. R. and Lodish, H. F. (1985a) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316 234–238.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R. R. and Lodish, H. F. (1985b) Structure of the murine anion exchange protein. J. Cell Biochem. 29 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Kurzer, F. and Douraghi-Zadeh, K. (1967) Advances in the chemistry of car-bodiimides. Chemical Reviews 67 107–152.

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P. (1980) Kinetic properties of ion carriers and channels. J. Memb. Biol. 57 163–178.

    Article  Google Scholar 

  • Lepke, S. and Passow, H. (1982) Inverse effects of dansylation of red blood cell membrane on band 3 protein-mediated transport of sulfate and chloride. J. Physiol. 328 27–48.

    PubMed  CAS  Google Scholar 

  • Lepke, S., Fasold, H., Pring, M., and Passow, H. (1976) A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4′-diisothiocyano-stilbene-2,2′-disulfonic acid (DIDS) and of its dehydroderivative (H2DIDS). J. Memb. Biol. 29 147–177.

    Article  CAS  Google Scholar 

  • Lundblad, R. L. and Noyes, C. M., eds. (1984) Chemical Reagents for Protein Modification vol. I and II (CRC Press Inc., Boca Raton).

    Google Scholar 

  • Matsuyama, H., Kawano, Y., and Hamasaki, N. (1983) Anion transport activity in the human erythrocyte membrane modulation by proteolytic digestion of the 38.000 dalton fragment in band 3. J. Biol. Chem. 258 15376–15381.

    PubMed  CAS  Google Scholar 

  • Means, G. E. and Feeney, R. E., eds. (1971) Chemical Modification of Proteins (Holden-Day Inc., San Francisco).

    Google Scholar 

  • Milanick, M. A. and Gunn, R. B. (1982) Proton-sulfate cotransport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J. Gen. Physiol. 79 87–113.

    Article  PubMed  CAS  Google Scholar 

  • Milanick, M. A. and Gunn, R. B. (1984) Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells. Am. J. Physiol. 247 C247-C259.

    PubMed  CAS  Google Scholar 

  • Milanick, M. A. and Gunn, R. B. (1986) Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites. Am. J. Physiol. 250 C955-C969.

    PubMed  CAS  Google Scholar 

  • Mueller, T. J., Li, Y. T., and Morrison, M. (1979) Effects of Endo-β-galactiosidase, on intact human erythrocytes. J. Biol. Chemistry 254 8103–8106.

    CAS  Google Scholar 

  • Nanri, H., Hamasaki, N., and Minakawi, S. (1983) Affinity labeling of erythrocyte band 3 protein with pyridoxal 5-phosphate, involvement of the 35.000 dalton fragment in anion transport. J. Biol Chem. 258 5985–5989.

    PubMed  CAS  Google Scholar 

  • Passow, H. (1986) Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Pharmacol. 103 61–203.

    PubMed  CAS  Google Scholar 

  • Passow, H., Fasold, H., Zaki, L., Schuhmann, B., and Lepke, S. (1975) Membrane proteins and anion exchange in human erythrocytes, in Bio-membranes: Structure and Function vol. 35 (Gardos, G. and Szasz, I., eds.) Budapest, Publishing House of the Hungarian Academy of Sciences, pp. 197–214.

    Google Scholar 

  • Passow, H., Fasold, H., Gartner, M. E., Legrum, B., Ruffing, W., and Zaki, L. (1980) Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann. NY Acad. Sci. 341 361–383.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A. K. and Knowles, J. R. (1972) The number of catalytically essential carboxyl groups in pepsin. Modification of enzyme by trimethyloxonium fluroborate. Eur. J. Biochem. 31 510–517.

    Article  PubMed  CAS  Google Scholar 

  • Patthy, L. and Thész, J. (1980) Origin of selectivity of α-dicarbonyl reagents for arginyl residues of anion-binding sites. Eur. J. Biochem. 105 387–393.

    Article  PubMed  CAS  Google Scholar 

  • Pedemonte, C. H. and Kaplan, J. G. (1986) Carbodiimide interaction of Na,K-ATPase. A consequence of internal cross-linking and not carboxyl group modification. J. Biol. Chem. 261 3632–3639.

    PubMed  CAS  Google Scholar 

  • Perfetti, R. B., Anderson, C. D., and Hall, P. L. (1976) The chemical modification of papain with l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Biochemistry 15 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  • Pho, D. B., Roustan, C., Tot, A. N. T., and Pradel, L. -A. (1977) Evidence for an essential glutamyl residue in yeast hexokinase. Biochemistry 16 4533–4537.

    Article  PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Sack, J. S., and Vyas, N. K. (1987) Stabilization of charges on isolated ionic groups sequestred in proteins by polarized peptide units. Nature 329 561–564.

    Article  PubMed  CAS  Google Scholar 

  • Raess, B. U., Record, D. M., and Tunnicliff, G. (1985) Interaction of phe-nylglyoxal with the human erythrocyte (Ca2+, Mg2+)-ATPase. Molecular Pharmacol. 27 444–450.

    CAS  Google Scholar 

  • Raida, M. and Passow, H. (1985) Enhancement of divalent anion transport across the human red blood cell membrane by the water-soluble dansyl chloride derivative 2-(N-piperidine)ethylamine-1-naphthyl-5-sulfonylchloride (PENS-C1). Biochim. Biophys. Acta 812 624–632.

    Article  PubMed  CAS  Google Scholar 

  • Rao, A., Martin, P., Reithmeier, R. A. F., and Cantley, L. C. (1979) Location of the stilbenedisulfonate binding site of the human erythrocyte anionexchange system by resonance energy transfer Biochemistry 18 4505–4516.

    Article  PubMed  CAS  Google Scholar 

  • Riordan, J. F. (1973) Functional arginyl residues in carboxypeptidase A. Modification with butanedione. Biochemistry 12 3915–3923.

    Article  PubMed  CAS  Google Scholar 

  • Riordan, J. F. (1979) Arginyl residues and anion binding sites in proteins. Prot. Mol. Cell. Biochem. 26 71–92.

    CAS  Google Scholar 

  • Riordan, J. F., McElvang, K. D., and Borders, C. L., Jr. (1977) Arginyl residues: Anion recognition sites in enzymes. Science 195 884–886.

    Article  PubMed  CAS  Google Scholar 

  • Rudloff, V., Lepke, S., and Passow, H. (1983) Inhibition of anion transport across the red cell membrane by dinitrophenylation of a specific lysine residue at the H2-DIDS binding site of the band 3 protein. FEBS Lett. 163 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Schnell, K. F., Elbe, W., Kasbauer, J., Kaufmann, E. (1983) Electron spin resonance studies on the inorganic-anion-transport system of the human red blood cell. Binding of a disulfonatostilbene spin label (NDS-Tempo) and inhibiton of anion transport. Biochim. Biophys. Acta 732 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Sheehan, J. C, Cruickshank, P. A., and Boshhart, G. L. (1961) A conveinient synthesis of water soluble carbodiimides. J. Org. Chem. 26 2525–2528.

    Article  CAS  Google Scholar 

  • Ships, S., Shami, Y., Breuer, W., and Rothstein, A. (1977) Synthesis of tritiated 4.4′-diisothiocyano-2.2′-stilbene disulfonic acid (3H-DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J. Memb. Biol. 33 311–323.

    Article  Google Scholar 

  • Sigrist, H. and Zahler, P. (1982) Hydrophobic labeling and crosslinking of membrane proteins, in Membrane and Transport, vol. I. (Martonosi, A. N., ed.), Plenum, New York, pp. 173–184.

    Google Scholar 

  • Smith, M., Moffatt, J. G., and Khorana, H. G. (1958) Observations on the reaction of carbodiimides with acids and some new applications in the synthesis of phosphoric acid esters. J. Am. Chem. Soc. 80 6204–6212.

    Article  CAS  Google Scholar 

  • Steck, T. L. (1974) The organization of proteins in the human red cell membrane. J. Cell. Biol 62 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L. and Yu, J. (1973) Selective solubilization of proteins from red blood cell membranes by protein pertubants. J. Supra. Mol. Struct. 1 220–232.

    Article  CAS  Google Scholar 

  • Sternberg, M. J. E., Hayes, F. R. F, Russell, A. J., Thomas, P. G., and Fersht, A. R. (1987) Prediction of electrostatic effects of engineering of protein charges. Nature 330 86–88.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K. (1968) The reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem. 243 6171–6179.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Stein, W. H., and Moore, S. (1967) The identification of a glutamic acid residue as part of the active site of ribonuclease T1. J. Biol. Chem. 242 4682–4690.

    PubMed  CAS  Google Scholar 

  • Vandenbunder, B., Dreyfus, M., Bertrand, O., Dognin, M. J., Sibilli, L., and Buc, H. (1981) Mechanism of allosteric activation of glycogen Phosphorylase probed by the reactivity of essential arginyl residues. Identification of an arginine residue involved in the binding of glucose 1-phosphate. Biochemistry 20 2354–2360.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A. (1987) What about protein polarity? Nature 330 15–16.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M. M., Moldovan, M., and Sokolovsky, M. (1975) Modification of arginyl residues in porcine carboxypeptidase B. Eur. J. Biochem. 53 207–216.

    Article  Google Scholar 

  • Werner, P. K. and Reithmeier, R. A. F. (1988) The mechanisms of inhibition of anion exchange in human erythrocytes by l-ethyl-3-[3-(tri-methylammonio)propyl]carbodiimide. Biochem. Biophys. Acta 942 19–32.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O. and Bjerrum, P. J. (1982) Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 79 253–282.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O. and Bjerrum, P. J. (1983) Transport and modifier sites in Capnophorin, the anion transport protein of the erythrocyte membrane, in Structure and Function of Membrane Proteins (Quagliariello, E. and Palmieri, F. eds.), Elsevier Sciences Publishers, Amsterdam, pp. 95–106.

    Google Scholar 

  • Wieth, J. O., Bjerrum, P. J., and Borders, C. L., Jr. (1982b) Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine specific reagent. J. Gen. Physiol. 79 283–312.

    Article  PubMed  CAS  Google Scholar 

  • Wieth, J. O., Bjerrum, P. J., Brahm, J., and Andersen, O. S. (1982c) The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange. Tokai J. Exp. Clin. Med. 7 suppl., pp. 91–101.

    PubMed  CAS  Google Scholar 

  • Wieth, J. O., Andersen, O. S., Brahm, J., Bjerrum, P. J., and Borders, C. L., Jr. (1982a) Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites. Phil. Trans. R. Soc. London 299 383–399.

    Article  CAS  Google Scholar 

  • Wilcox, P. E. (1967) Esterification. Meth. Enzymol. 11 605–626.

    Article  Google Scholar 

  • Wilcox, P. E. (1972) Esterification. Meth. Enzymol. 25 596–617.

    Article  CAS  Google Scholar 

  • Woodward, R. B. and Olofson, R. A. (1966) The reaction of isoxazolium salts with nucleophiles. Tetrahedron suppl. 7 415–440.

    Article  Google Scholar 

  • Woodward, R. B., Olofson, R. A., and Mayer, H. (1961) A new synthesis of peptides. J. Am. Chem. Soc. 83 1010–1012.

    Article  CAS  Google Scholar 

  • Yu, J. and Steck, T. L. (1975) Associations of band 3, the predominant polypeptide of the human erythrocyte membrane. J. Biol. Chem. 250 9176–9184.

    CAS  Google Scholar 

  • Zaki, L. (1981) Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochem. Biophys. Res. Comm. 99 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Zaki, L. (1982) The effect of arginine specific reagents on anion transport across the red blood cells, in Protides Biol. Fluids 29 (Peeters, H., ed.,) 29th Collogium 1981, Pergamon, Oxford, pp. 279–282.

    Google Scholar 

  • Zaki, L. (1983) Anion transport in red blood cell and arginine specific reagents (1) Effects of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane. Biochim. Biophys. Res. Comm. 110 616–624.

    Article  CAS  Google Scholar 

  • Zaki, L. (1984) Anion transport in red blood cells and arginine specific reagents. The location of 14C-phenylglyoxal binding sites in the anion transport protein in the membrane of human red cells. FEBS Lett. 169 234–240.

    Article  PubMed  CAS  Google Scholar 

  • Zaki, L. and Julien, T. (1985) Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding of arginine specific reagents. Biochim. Biophys. Acta 818 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Zaki, L. and Julien, T. (1986) Chemical properties of anion binding site in red blood cell membrane, in Eight School on Biophysics of Membrane Transport. School Proceedings, vol. II, Wroclaw, Poland, Pub. Co. Argicultural University, pp. 239–259.

    Google Scholar 

  • Zaki, L., Fasold, H., Schuhmann, B., and Passow, H. (1975) Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells. J. Cell Physiol. 86 471–494.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

Bjerrum, P.J. (1989). Irreversible Modification of the Anion Transporter. In: Raess, B.U., Tunnicliff, G. (eds) The Red Cell Membrane. Contemporary Biomedicine, vol 10. Humana Press. https://doi.org/10.1007/978-1-4612-4500-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4500-1_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8848-0

  • Online ISBN: 978-1-4612-4500-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics