Advertisement

Muscarinic Receptor Purification and Properties

  • Michael Schimerlik
Part of the The Receptors book series (REC)

Abstract

The solubilization and purification of mAChR has proven to be a rather difficult problem because of a low density of receptor sites, poor yields of solubilized protein upon detergent extraction, and receptor instability in many commonly used, inexpensive detergents. Initial studies indicated that the detergent digitonin was capable of solubilizing muscarinic binding sites from the brain (Beld and Ariens, 1974; Hurko, 1978; Aronstam et al., 1978; Gorissen et al., 1978). Since most commercial preparations of digitonin are heterogeneous, containing 70–80% digitonin, 10–20% gitonin and tigonin, plus 5–15% minor saponins, the composition of the solubilizing agent is poorly defined. The variability in efficiency of receptor solubilization and the solubility of the detergent itself in aqueous solution are most probably related to differing digitonin compositions that, in turn, depend on the lot number and supplier. In studies on receptor solubilization from the rat brain (Repke and Matthies, 1980), optimal results were obtained using a defined mixture of 3 digitonin/2 gitonin (w/w).

Keywords

Muscarinic Receptor Muscarinic Acetylcholine Receptor Muscarinic Agonist Guanine Nucleotide Binding Protein Muscarinic Receptor Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amitai, G., Avissar, S., Balderman, D., and Sokolovsky, M. (1982) Affinity labeling of muscarinic receptors in rat cerebral cortex with a photolabile antagonist. Proc. Nat. Acad. Sci. USA 79, 243–247.PubMedCrossRefGoogle Scholar
  2. Andre, C., De Backer, J. P., Guillet, J. C., Vanderheyden, P., Vanquelin, G., and Strosberg, A. D. (1983) Purification of muscarinic acetylcholine receptors by affinity chromatography. EMBO Journ. 2, 499–504.Google Scholar
  3. Aronstam, R. S., Schuessler, D. C., Jr., and Eldefrawi, M. E. (1978) Solubilization of muscarinic acetylcholine receptors of bovine brain. Life Sci. 23, 1377–1382.PubMedCrossRefGoogle Scholar
  4. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1989) Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 56, 487–493.PubMedCrossRefGoogle Scholar
  5. Ashkenazi, A., Winslow, J. W., Peralta, E. G., Peterson, G. L., Schimerlik, M. I., Capon, D. J., and Ramachandran, J. (1987) An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238, 672–674.PubMedCrossRefGoogle Scholar
  6. Avissar, S. Amitai, G., and Sokolovski, M. (1983) Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high-and low-affinity agonist states. Proc. Nat. Acad. Sci. USA 80, 156–159.PubMedCrossRefGoogle Scholar
  7. Avissar, S., Moscona-Amir, E., and Sokolovsky, M. (1982) Photoaffinity labeling reveals two muscarinic receptor macromolecules associated with the presence of calcium in rat adenohypophysis. Febs. Lett. 150, 343–346.PubMedCrossRefGoogle Scholar
  8. Baron, B., Gavish, M., and Sokolovski, M. (1985) Heterogeneity of solubilized muscarinic cholinergic receptors: Binding and hydrodynamic properties. Arch. Biochem. Biophys. 240, 281–296.PubMedCrossRefGoogle Scholar
  9. Barrantes, F. J. (1975) The nicotinic cholinergic receptor: Different compositions evidenced by statistical analysis. Biochem. Biophys. Res. Comm. 62, 407–414.PubMedCrossRefGoogle Scholar
  10. Beld, A. J. and Ariens, E. J. (1974) Stereospecific binding as a tool in attempts to localize and isolate muscarinic receptors. Eur. J. Pharmacol. 25, 203–209.PubMedCrossRefGoogle Scholar
  11. Benovic, J. L., Pike, L. J., Cerione, R. A., Staniszewski, C., Yoshima, T., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1985) Phosphorylation of the mammalian β-adrenergic receptor by cyclic AMP-dependent protein kinase. J. Biol. Chem. 260, 7094–7101.PubMedGoogle Scholar
  12. Benovic, J. L., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J. (1986a) β-Adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Nat. Acad. Sci. USA 83, 2797–2801.CrossRefGoogle Scholar
  13. Benovic, J. L., Mayor, Jr., F., Somers, R. L., Caron, M. G., and Lefkowitz, R. J. (1986b) Light-dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase. Nature 321, 869–872.CrossRefGoogle Scholar
  14. Burgoyne, R. D. (1980) A possible role of synaptic-membrane protein phosphorylation in the regulation of muscarinic acetylcholine receptors. Febs. Lett. 122, 288–292.PubMedCrossRefGoogle Scholar
  15. Burgoyne, R. D. (1981) The loss of muscarinic acetylcholine receptors in synaptic membranes under phosphorylating conditions is dependent on calmodulin. Febs. Lett. 127, 144–148.PubMedCrossRefGoogle Scholar
  16. Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1979) Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Comm. 87, 1000–1005.PubMedCrossRefGoogle Scholar
  17. Berrie, C. P., Birdsall, N. J. M., Hulme, E. C., Keen, M., and Stockton, M. (1984) Solubilization and characterization of guanine nucleotide-sensitive muscarinic agonist binding sites from rat myocardium. Br. J. Pharmacol. 82, 853–861.PubMedGoogle Scholar
  18. Berrie, C. P., Birdsall, N. J. M., Dadi, H. K., Hulme, E. C., Morris, R. J., Stockton, J. M., and Wheatley, M. (1985) Purification of the muscarini acetylcholine receptor from rat forebrain. Biochem. Soc. Trans. 13, 1101–1103.PubMedGoogle Scholar
  19. Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1979) A study of the muscarinic receptor by gel electrophoresis. Br. J. Pharmacol. 66, 337–342.PubMedGoogle Scholar
  20. Blobel, G. and Dobberstein, B. (1975) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67, 852–862.PubMedCrossRefGoogle Scholar
  21. Bonner, T. I., Buckley, N. J., Young, A. C., and Brann, M. R. (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527–532 (see also Science 237, 1628 for complete DNA sequences).PubMedCrossRefGoogle Scholar
  22. Bonner, T. I., Young, A. C., Brann, M. R., and Buckley, N. J. (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403–410.PubMedCrossRefGoogle Scholar
  23. Brann, M. R., Buckley, N. J., Jones, P. S. V., and Bonner, T. I. (1987) Expression of a cloned muscarinic receptor in A9 L cells. Molec. Pharmacol. 32, 450–455.Google Scholar
  24. Cremo, C. R., Herron, G. S., and Schimerlik, M. I. (1981) Solubilization of the atrial muscarinic receptor: A new detergent system and rapid assays. Anal. Biochem. 115, 331–338.PubMedCrossRefGoogle Scholar
  25. Cremo, C. and Schimerlik, M. I. (1984) Photoaffinity labeling of the solubilized, partially purified muscarinic acetylcholine receptor from porcine atria by p-azidoatropine methyl iodide. Biochemistry 23, 3494–3501.PubMedCrossRefGoogle Scholar
  26. Dadi, H. K. and Morris, R. J. (1984) Muscarinic cholinergic receptor of rat brain. Factors influencing migration in electrophoresis and gel filtration in sodium dodecyl sulfate. Eur. J. Biochem. 144, 617–628.PubMedCrossRefGoogle Scholar
  27. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.PubMedCrossRefGoogle Scholar
  28. Dratz, E. A. and Hargrave, P. A. (1983) The structure of rhodopsin and the rod outer segment disc membrane. Tr. Biochem. Sci. 8, 128–131.CrossRefGoogle Scholar
  29. Engelman, D. M., Steitz, T. A., and Goldman, A. (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Ann. Rev. Biophys. Biophys. Chem. 15, 321–353.CrossRefGoogle Scholar
  30. Florio, V. A. and Sternweis, P. C. (1985) Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260, 3477–3483.PubMedGoogle Scholar
  31. Fukuda, K., Kubo, T., Akiba, I., Maeda, A., Mishina, M., and Numa, S. (1987) Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature 327, 623–625.PubMedCrossRefGoogle Scholar
  32. Fukuda, K., Higashida, H., Kubo, T., Maeda, A., Akiba, I., Bujo, H., Mishina, M., and Numa, S. (1988) Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG108–15 cells. Nature 335, 355–358.PubMedCrossRefGoogle Scholar
  33. Gardner, A. L., Choo, L. K., and Mitchelson, F. (1988) Comparison of the effects of some muscarinic agonists on smooth muscle function and phosphatidylinositol turnover in the guinea-pig taenia caeci. Br. J. Pharmacol. 94, 199–211.PubMedGoogle Scholar
  34. Gavish, M. and Sokolovsky, M. (1982) Solubilization of muscarinic acetylcholine receptor by zwitterionic detergent from rat brain cortex. Biochem. Biophys. Res. Comm. 009, 819–824.CrossRefGoogle Scholar
  35. Gorissen, H., Aerts, G., and Laduron, P. (1978) Characterization of digitonin-solubilized muscarinic receptor from rat brain. Febs. Lett. 96, 64–68.PubMedCrossRefGoogle Scholar
  36. Gorissen, H., Aerts, G., Ilien, B., and Laduron, P. (1981) Solubilization of muscarinic acetylcholine receptors from mammalian brain: An analytical approach. Anal. Biochem. 14, 33–41.CrossRefGoogle Scholar
  37. Haga, T. (1983) Characterization of muscarinic acetylcholine receptors solubilized by L-a-lysophosphatidylcholine and lubrol PX, in Pharmacologic and Biochemical Aspects of Neurotransmitter Receptors ( Yoshida, H. and Yamamura, H. I., eds.) John Wiley, N.Y., 43–58.Google Scholar
  38. Haga, K. and Haga, T. (1983) Affinity chromatography of the muscarinic acetylcholine receptor. J. Biol. Chem. 258, 13575–13579.PubMedGoogle Scholar
  39. Haga, K. and Haga, T. (1985) Purification of the muscarinic acetylcholine receptor from porcine brain. J. Biol. Chem. 260, 7927–7935.PubMedGoogle Scholar
  40. Haga, K., Haga, T., and Ichiyama, A. (1986) Reconstitution of the muscarinic acetylcholine receptor: guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (Gi and Go). J. Biol. Chem. 261, 10133–10140.PubMedGoogle Scholar
  41. Haga, K., Haga, T., Ichiyama, A., Katada, T., Kurose, H., and Ui, M. (1985) Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature 316, 731–733.PubMedCrossRefGoogle Scholar
  42. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283, 90–92.PubMedCrossRefGoogle Scholar
  43. He, X., Wu, X., and Baum, B. J. (1988) Protein kinase C differentially inhibits muscarinic receptor operated Ca2+ release and entry in human salivary cells. Biochem. Biophys. Res. Commun. 152, 1062–1069.PubMedCrossRefGoogle Scholar
  44. Henderson, R. and Unwin, P. T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32.PubMedCrossRefGoogle Scholar
  45. Herron, G. S. and Schimerlik, M. I. (1983) Glycoprotein properties of the solubilized atrial muscarinic acetylcholine receptor. J. Neurochem. 41, 1414–1420.PubMedCrossRefGoogle Scholar
  46. Herron, G. S., Miller, S., Manley, W-L., and Schimerlik, M. I. (1982) Ligand interactions with the solubilized porcine atrial muscarinic receptor. Biochemistry 21, 515–520.PubMedCrossRefGoogle Scholar
  47. Ho, A. K. S. and Wang, J. H. (1985) Calmodulin regulation of cholinergic muscarinic receptor: Effects of calcium and phosphorylating states. Biochem. Biophys. Res. Comm. 133, 1193–1200.PubMedCrossRefGoogle Scholar
  48. Ho, A. K. S., Shang, K., and Duffield, R. (1986) Calmodulin regulation of the cholinergic receptor in the rat heart during ontogeny and senescence. Mech. Ageing Develop. 36, 143–154.CrossRefGoogle Scholar
  49. Hootman, S. R., Picado-Leonard, T. M., and Burnham, D. B. (1985) Muscarinic acetylcholine receptor structure in acinar cells of mammalian exocrine glands. J. Biol. Chem. 260, 4186–4194.PubMedGoogle Scholar
  50. Hubbard, S. C. and Ivatt, R. J. (1981) Synthesis and processing of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 50, 555–583.PubMedCrossRefGoogle Scholar
  51. Hulme, E. C. and Birdsall, N. J. M. (1986) Distinctions in acetylcholine receptor activity. Nature 323, 396–397.PubMedCrossRefGoogle Scholar
  52. Hulme, E. C., Birdsall, N. J. M., Burgen, A. S. V., and Mehta, P. (1978) The binding of antagonists to brain muscarinic receptors. Mol. Pharmacol. 14, 737–750.PubMedGoogle Scholar
  53. Hulme, E. C., Berrie, C. P., Haga, T., Birdsall, N. J. M., Burgen, A. S. V., and Stockton, J. (1983) Solubilization and molecular characterization of muscarinic acetylcholine receptors. J. Receptor Res. 3, 301–311.Google Scholar
  54. Hurko, O. (1978) Specific [3H]quinuclidinyl benzilate binding activity in digitonin-solubilized preparations from bovine brain. Arch. Biochem. Biophys. 190, 434–445.PubMedCrossRefGoogle Scholar
  55. Jones, P. S. V., Barker, J. L., Bonner, T. I., Buckley, N. J., and Brann, M. R. (1988) Electrophysiological characterization of cloned ml muscarinic receptors expressed in A9 L cells. Proc. Natl. Acad. Sci. USA 85, 4056–4060.PubMedCrossRefGoogle Scholar
  56. Kelleher, D. J. and Johnson, G. L. (1986) Phosphorylation of rhodop- sin by protein kinase C in vitro. J. Biol. Chem. 261, 4749–4757.PubMedGoogle Scholar
  57. Krebs, E. G. and Beavo, J. A. (1979) Phosphorylation- dephosphorylation of enzymes. Ann. Rev. Biochem. 48, 923–959.PubMedCrossRefGoogle Scholar
  58. Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. (1986a) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.CrossRefGoogle Scholar
  59. Kubo, T., Maeda, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Matsuo, H., Hirose, T., and Numa, S. (1986b) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. Febs. Lett. 209, 367–372.CrossRefGoogle Scholar
  60. Kuno, T., Shirakawa, O., and Tanaka, C. (1983) Regulation of the solubilized bovine cerebral cortex muscarinic receptor by GTP and Na+. Biochem. Biophys. Res. Comm. 112, 948–953.PubMedCrossRefGoogle Scholar
  61. Kurose, H., Katada, T., Haga, T., Haga, K., Ichiyama, A., and Ui, M. (1986) Functional interaction of purified muscarinic receptors with purified guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J. Biol. Chem. 261, 6423–6428.PubMedGoogle Scholar
  62. Kwatra, M. M. and Hosey, M. M. (1986) Phosphorylation of the cardiac muscarinic receptor in intact chick heart and its regulation by a muscarinic agonist. J. Biol. Chem. 261, 12429–12432.PubMedGoogle Scholar
  63. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, 105–132.PubMedCrossRefGoogle Scholar
  64. Large, T. H., Cho, N. J., De Mello, F. G., and Klein, W. L. (1985a) Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis. J. Biol. Chem. 260, 8873–8881.Google Scholar
  65. Large, T. H., Rauh, J. J., De Mellow, F. G., and Klein, W. L. (1985b) Two molecular weight forms of muscarinic acetylcholine receptors in the avian central nervous system: Switch in predominant form during differentiation of synapses. Proc. Nat. Acad. Sci. USA, 82, 8785–8789.CrossRefGoogle Scholar
  66. Lawson, E. Q., Sadler, A. J., Harmatz, D., Brandau, D. T., Micanovic, R., MacElroy, R. D., and Middaugh, C. R. (1984) A simple experimental model for hydrophobic interactions in proteins. J. Biol. Chem. 259, 2910–2912.PubMedGoogle Scholar
  67. Lindmar, R., Loffelholz, K., and Sandmann, J. (1988) The mechanism of muscarinic hydrolysis of choline phospholipids in the heart. Biochem. Pharmacol. 37, 4689–4695.PubMedCrossRefGoogle Scholar
  68. Monsma, F. J., Abood, L. G., and Hoss, W. (1988) Inhibition of phosphoinositide turnover by selective muscarinic antagonists in the rat striatum. Biochem. Pharmacol. 37, 2437–2443.PubMedCrossRefGoogle Scholar
  69. Nathans, J., Thomas, D., and Hogness, D. S. (1986) Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232, 193–202.PubMedCrossRefGoogle Scholar
  70. Ovchinnikov, Y. A. (1982) Rhodopsin and bacterio-rhodopsin: structure-function relationships. FEBS Lett. 148, 179–191.PubMedCrossRefGoogle Scholar
  71. Peralta, E. G., Winslow, J. W., Peterson, G. L., Smith, D. H., Askenazi, A. Ramachandran, J., Schimerlik, M. I., and Capon, D. J. (1987a) Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236, 600–605.CrossRefGoogle Scholar
  72. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J., and Capon, D. J. (1987b) Distinct primary structures, ligand binding properties and tissue specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6, 3923–3929.Google Scholar
  73. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434–437.PubMedCrossRefGoogle Scholar
  74. Peterson, G. L. and Schimerlik, M. I. (1984) Large scale preparation and characterization of membrane-bound and detergent-solubilized muscarinic acetylcholine receptor from pig atria. Prep. Biochem. 14, 33–74.PubMedCrossRefGoogle Scholar
  75. Peterson, G. L., Herron, G. S., Yamaki, M., Fullerton, D. S., and Schimerlik, M. I. (1984) Purification of the muscarinic acetylcholine receptor from porcine atria. Proc. Natl. Acad. Sci. USA 81, 4993–4997.PubMedCrossRefGoogle Scholar
  76. Peterson, G. L., Rosenbaum, L. C., and Schimerlik, M. I. (1988) Solubilization and hydrodynamic properties of porcine atrial muscarinic acetylcholine receptor in dodecyl-β-D-maltoside. Biochem. Journ. 255, 553–560.Google Scholar
  77. Peterson, G. L., Rosenbaum, L. C., Broderick, D. J., and Schimerlik, M. I. (1986) Physical properties of the purified cardiac muscarinic acetylcholine receptor. Biochemistry 25, 3189–3202.PubMedCrossRefGoogle Scholar
  78. Rauh, J. J., Lambert, M. P., Cho, N. J., Chin, H., and Klein, W. L. (1986) Glycoprotein properties of muscarinic acetylcholine receptors from bovine cerebral cortex. J. Neurochem. 46, 23–32.PubMedCrossRefGoogle Scholar
  79. Repke, H. and Matthies, H. (1980) Biochemical characterization of solubilized muscarinic acetylcholine receptors. Brain Res. Bull. 5, 703–709.PubMedCrossRefGoogle Scholar
  80. Rosenberger, L. B., Yamamura, H. I., and Roeske, W. R. (1980) Cardiac muscarinic cholinergic receptor binding is regulated by Na+ and guanine nucleotides. J. Biol. Chem. 255, 820–823.PubMedGoogle Scholar
  81. Rosenbaum, L. C., Malencik, D. A., Tota, M. R., Anderson, S. R., and Schimerlik, M. I. (1987) Phosphorylation of the porcine atrial muscarinic receptor by cAMP-dependent protein kinase. Biochemistry 26, 8183–8188.PubMedCrossRefGoogle Scholar
  82. Schimerlik, M. I., Miller, S., Peterson, G. L., Rosenbaum, L. C., and Tota, M. R. (1986) Biochemical studies on muscarinic receptors in porcine atrium. Tr. Pharmacol. Sci. February Supple., 1–7.Google Scholar
  83. Searles, R. P. and Schimerlik, M. I. (1980) Ligand interactions with membrane-bound porcine atrial muscarinic receptor(s). Biochemistry 19, 3407–3413.PubMedCrossRefGoogle Scholar
  84. Sher, E., Gotti, C., Pandiella, A., Madeddu, L., and Clementi, F. (1988) Intracellular calcium homeostasis in a human neuroblastoma cell line: Modulation by depolarization, cholinergic receptors, and α-latrotoxin. J. Neurochem. 50, 1708–1713.PubMedCrossRefGoogle Scholar
  85. Shirakawa, O. and Tanaka, C. (1985) Molecular characterization of muscarinic receptor subtypes in bovine cerebral cortex by radiation inactivation and molecular exclusion h.p.l.c. Br. J. Pharmac. 86, 375–383.Google Scholar
  86. Shirakawa, O., Kuno, T., and Tanaka, G. (1983) The glycoprotein nature of solubilized muscarinic acetylcholine receptors from bovine cerebral cortex. Biochem. Biophys. Res. Comm. 115, 814–819.PubMedCrossRefGoogle Scholar
  87. Sokolovsky, M., Gurwitz, D., and Galron, R. (1980) Muscarinic receptor binding in mouse brain: Regulation by guanine nucleotides. Biochem. Biophys. Res. Comm. 94, 487–492.PubMedCrossRefGoogle Scholar
  88. Strader, C. D., Sigal, I. S., Register, R. B., Candelore, M. R., Rands, E., and Dixon, R. A. F. (1987) Identification of residues required for ligand binding to the β-adrenergic receptor. Proc. Nat. Acad. Sci. LISA 84, 4384–4388.CrossRefGoogle Scholar
  89. Tota, M. R., Kahler, K. R., and Schimerlik, M. I. (1987) Reconstitution of the purified porcine atrial muscarinic acetylcholine receptors with purified porcine atrial inhibitory guanine nucleotide binding protein. Biochemistry 26, 8175–8182.PubMedCrossRefGoogle Scholar
  90. Venter, J. C. (1983) Muscarinic cholinergic receptor structure. Receptor size, membrane orientation and absence of major phylogenetic structural diversity. J. Biol. Chem. 258, 4842–4848.PubMedGoogle Scholar
  91. Venter, J. C., Eddy, B., Hall, L. M., and Fraser, C. M. (1984) Monoclonal antibodies detect the conservation of muscarinic cholinergic receptor structure from Drosophila to human brain and detect possible structural homology with α1-adrenergic receptors. Proc. Nat. Acad. Sci. LISA 81, 272–276.CrossRefGoogle Scholar
  92. White, H. L. (1988) Effects of acetylcholine and other agents on 32Pprelabeled phosphoinositides and phosphatidate in crude synaptosomal preparations. J. Neurosci. Res. 20, 122–128.PubMedCrossRefGoogle Scholar
  93. Wilbur, W. J. and Lipman, D. J. (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc. Nat. Acad. Sci. LISA 80, 726–730.CrossRefGoogle Scholar
  94. Wilden, U. and Kuhn, H. (1982) Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochemistry 21, 3014–3022.PubMedCrossRefGoogle Scholar
  95. Yarden, Y., Rodriguez, H., Wong, S.K.-F., Brandt, D. R., May, D. C., Burnier, J., Harkins, R. N., Chen, E. Y., Ramachandrin, J., Ullrich, A., and Ross, E. M. (1986) The avian β-adrenergic receptor: Primary structure and membrane topology. Proc. Nat. Acad. Sci. USA 83, 6795–6799.PubMedCrossRefGoogle Scholar
  96. Zuker, C. S., Cowman, A. F., and Rubin, G. M. (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851–858.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Michael Schimerlik

There are no affiliations available

Personalised recommendations