Advertisement

The Poisson-Plancherel Formula for a Quasi-Algebraic Group with Abelian Radical and Reductive Generic Stabilizer

  • Pierre Torasso
Part of the Progress in Mathematics book series (PM, volume 82)

Abstract

In this section we state following M. Vergne, as a conjecture, the Poisson-Plancherel formula for a unimodular quasi-algebraic group. So, first we give the notation and the material which is necessary to do that.

Keywords

Haar Measure Radon Measure Zariski Open Subset Elliptic Element Orbital Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Do]
    P. Dourmashkin, A Poisson-Plancherel formula for groups of type B n, Thése M.I.T. (1984); a paraître.Google Scholar
  2. [Du-1]
    M. Duflo, Représentations unitaires des groupes de Lie et méthode des orbites, in “G.M.E.L.,” Bordas, Paris, 1982.Google Scholar
  3. [Du-2]
    M. Duflo, On the Plancherel formula for almost algebraic real Lie groups, in “Lie Groups Representations III;” Lecture Notes in Mathematics 1077, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.Google Scholar
  4. [Du-Ve]
    M. Duflo et M. Vergne, La formule de Plancherel des groupes de Lie semi-simples réels, in “Representations of Lie Groups;” Kyoto, Hiroshima (1986), Advanced Studies in Pure Mathematics 14, 1988.Google Scholar
  5. [Mu-Fo]
    D. Munford and J. Fogarty, Geometric Invariant Theory, in “A Series of Modern Surveys in Mathematics,” Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1982.Google Scholar
  6. [Pe-Ve]
    D. Peterson and M. Vergne, Recurrence relations for Plancherel functions, in “;” Lecture Notes in Mathematics 1243, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1987, pp. 240–261.Google Scholar
  7. [To]
    P. Torasso, La formule de Poisson-Plancherel pour un groupe presque algébrique à radical abélien: cas où le stabilisateur générique est réductif, Prépublication de Département de Mathématiques de l’Université de Poitiers No. 40 (212p.); (to appear in Mémoires de la S.M.F.).Google Scholar
  8. [Va]
    V.S. Varadarajan, Harmonic analysis on real reductive groups; Lecture Notes in Mathematics 1576, Springer Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  9. [Ve-1]
    M. Vergne, A Poisson-Plancherel formula without group representations, in “O.A.G.R. Conference,” INCREST, Bucarest, Roumania, 1980.Google Scholar
  10. [Ve-2]
    M. Vergne, A Poisson-Plancherel formula for semi-simple Lie groups, Ann. of Math 115 (1982), 639–666.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Pierre Torasso
    • 1
  1. 1.Laboratoire de Mathématiques URA CNRS D 1322 “Groupes de Lie et Géométrie”Université de PoitiersPoitiers CedexFrance

Personalised recommendations