Modelling and Nonlinear Control of an Overhead Crane

  • B. d’Andréa-Novel
  • J. Lévine
Chapter
Part of the Progress in Systems and Control Theory book series (PSCT, volume 4)

Abstract

In this work, we study the following positionning problem: we consider a platform moving along the horizontal axis, equipped with a winch around which a cable is enrolled, ended by the load. Large and fast movements are considered. Stabilization of a reference trajectory is studied via static state feedback and dynamic state feedback.

We show that the system can be linearized by dynamic feedback and the performances of the nonlinear dynamic controller are studied.

Keywords

Hunt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. d’Andréa-Novel. Commande non linéaire des robots. Editions Hermès, 1988.Google Scholar
  2. [2]
    B. d’Andréa, J. Lévine. Synthesis of nonlinear state feedback for the stabilization of a class of manipulators. Information and Decision Technologies 14, 1988, 145–168.Google Scholar
  3. [3]
    B. d’Andréa, L. Praly. About finite nonlinear zeros for decouplable systems. Systems and Control Letters 10, 1988, 103–109.CrossRefGoogle Scholar
  4. [4]
    C.I. Byrnes, A. Isidori. Local stabilization of minimum phase nonlinear systems. Systems and Control Letters 11, 1988, 9–17.CrossRefGoogle Scholar
  5. [5]
    B. Charlet, J. Lévine, R. Marino. On dynamic feedback linearization. Systems and Control Letters, to appear.Google Scholar
  6. [6]
    B. Charlet, J. Lévine, R. Marino. Sufficient conditions for dynamic feedback linearization. submitted. Google Scholar
  7. [7]
    D. Claude, M. Fliess, A. Isidori. Immersion directe et par bouclage d’un système non linéaire dans un linéaire. C.R.A.S. t. 296 I, 1983, 237–240.Google Scholar
  8. [8]
    J. Descusse, C.H. Moog. Decoupling with dynamic compensation for strong invertible affine nonlinear systems. Int. J. Control, Vol. 42 N. 6, 1985, 1387–1398. CrossRefGoogle Scholar
  9. [9]
    J. Descusse, C.H. Moog. Dynamic decoupling for right invertible nonlinear systems. Systems and Control Letters, Vol. 8 N. 4, 1987, 345–349.CrossRefGoogle Scholar
  10. [10]
    M.D. Di Benedetto, A. Isidori. The matching of nonlinear models via dynamic state feedback. SIAM J. Control and Optimization, Vol. 24, 1986, 1063–1075. CrossRefGoogle Scholar
  11. [11]
    M. Fliess. A new approach to the noninteracting control problem in nonlinear system theory. Proc. 23th Allerton Conf., 1985, 123–129. Google Scholar
  12. [12]
    L.R. Hunt, R. Su, G. Meyer. Design for multi-input nonlinear systems. Diff. Geometric Control Theory, R.W. Brockett, R.S. Millman, H.J. Sussmann, Eds. Birkhauser, 1983, 268–298. Google Scholar
  13. [13]
    A. Isidori. Nonlinear Control Systems: An introduction. Lecture Notes in Control and Information Sciences Springer-Verlag, Berlin, New-York, 1985. Google Scholar
  14. [14]
    A. Isidori. Control of nonlinear systems via dynamic state feedback. Conf. Algebraic and Geometric Methods in Nonlinear Control Theory, Paris, 1985. Google Scholar
  15. [15]
    A. Isidori, C.H. Moog, A. de Luca. A sufficient condition for full linearization via dynamic state feedback Proc. 25th. IEEE CDC, Athens, 1986. Google Scholar
  16. [16]
    B. Jakubczyk, W. Respondek. On linearization of control systems. Bull. Acad. Pol. Sci., Ser. Sci. Math., 28, 1980, 517–522. Google Scholar
  17. [17]
    H. Nijmeijer, W. Respondek. Dynamic input-output decoupling of nonlinear control systems. IEEE Trans. on Automatic Control, AC-33, 1988, 1065–1070. CrossRefGoogle Scholar
  18. [18]
    S. Singh. Decoupling of invertible nonlinear systems with state feedback and precompensation. IEEE Trans. on Automatic and Control, AC-25, 1980, 1237–1239. CrossRefGoogle Scholar
  19. [19]
    M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, 1978. Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • B. d’Andréa-Novel
  • J. Lévine

There are no affiliations available

Personalised recommendations