Advertisement

The Power of Counting

  • Uwe Schöning

Abstract

In this overview, various applications and variations of counting in structural complexity theory are discussed. The ability of exact counting is shown to be closely related with the ability of nondeterministic complementation. Relations between counting classes and classes requiring unique or few accepting computations are revealed. Further, approximate counting and relativized results are discussed.

Keywords

Computation Path Oracle Query Polynomial Hierarchy Counting Class Graph Isomorphism Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al85]
    E. Allender. Invertible Functions. Ph.D. thesis, Georgia Tech., 1985.Google Scholar
  2. [An80]
    D. Angluin. On counting problems and the polynomial-time hierarchy. Theor. Comput. Sci. 12 (1980): 161–173.MathSciNetMATHCrossRefGoogle Scholar
  3. [BGS75]
    T.P. Baker, J. Gill, and R.M. Solovay. Relativizations of the P=?NP question. SIAM J. Comput. 4 (1975): 431–442.MathSciNetMATHCrossRefGoogle Scholar
  4. [BBS86]
    J.L. Balcázar, R.V. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. Joun. of the Assoc. Comput. Mach. 33 (1986): 603–617.MATHCrossRefGoogle Scholar
  5. [Ba68]
    Y.M. Barzdin. Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Soviet Math. Dokl. 9 (1968): 1251–1254.MATHGoogle Scholar
  6. [BGS87]
    A. Bertoni, M. Goldwurm, and M. Sabatini. Computing the counting function of context-free languages. Symp. Theor. Aspects Computer Science, Lecture Notes in Computer Science 247, 169–179, Springer-Verlag, 1987.Google Scholar
  7. [BHZ87]
    R.B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs? Inform. Proc. Letters 25 (1987): 27–32.MathSciNetCrossRefGoogle Scholar
  8. [CH88]
    J. Cai and L.A. Hemachandra. Enumerative counting is hard. Proc. 3rd Structure in Complexity Theory Conf., 194–203, IEEE, 1988.Google Scholar
  9. [CH89]
    J. Cai and L.A. Hemachandra. On the power of parity. Symp. Theor. Aspects of Comput. Sci., Lecture Notes in Computer Science, Springer-Verlag, 1989, to appear.Google Scholar
  10. [FSS84]
    M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17 (1984): 13–27.MathSciNetMATHCrossRefGoogle Scholar
  11. [Gi77]
    J. Gill. Computational complexity of probabilistic complexity classes. SIAM Journ. Comput. 6 (1977): 675–695.MathSciNetMATHCrossRefGoogle Scholar
  12. [GS85]
    A.V. Goldberg and M. Sipser. Compression and ranking. 17th ACM Symp. Theory Comput. 440–448, 1985.Google Scholar
  13. [GP86]
    L.M. Goldschlager and I. Parberry. On the construction of parallel computers from various bases of boolean functions. Theor. Comput. Sci. 43 (1986): 43–58.MathSciNetMATHCrossRefGoogle Scholar
  14. [GJY87]
    J. Goldsmith, D. Joseph, and P. Young. Using self-reducibility to characterize polynomial time. Tech. Report 87-11-11, Computer Science Dept., Univ. of Washington, Seattle, 1987.Google Scholar
  15. [GS84]
    S. Grollmann and A.L. Selman. Complexity measures for public-key crypto-systems. 25th Symp. Found. Comput. Sci., 495–503, IEEE, 1984.Google Scholar
  16. [HIS83]
    J. Hartmanis, N. Immerman and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. 15th ACM Symp. Theory Comput., 382–391, 1983.Google Scholar
  17. [Ha87]
    J.T. Hastad. Computational limitations for small-depth circuits. Ph.D. thesis, MIT Press, Cambridge, MA., 1987.Google Scholar
  18. [He87a]
    L.A. Hemachandra. Counting in Structural Complexity Theory. Ph.D. thesis, Cornell University, 1987.Google Scholar
  19. [He87b]
    L.A. Hemachandra. On ranking. Proc. 2nd Structure in Complexity Theory Conf., 103–117, IEEE, 1987.Google Scholar
  20. [He87c]
    L.A. Hemachandra. The strong exponential hierarchy collapses. 19th ACM Symp. Theory Comput., 110–122, 1987.Google Scholar
  21. [He87d]
    L. A. Hemachandra. On parity and near-testability: P ANT A with probability 1. Tech. Report 87-11-11, Comput. Sci. Dept., Univ. of Washington, Seattle, 1987.Google Scholar
  22. [Hu88]
    D.T. Huynh. The complexity of ranking. Proc. 3rd Structure in Complexity Theory Conf., 204–212, IEEE, 1988.Google Scholar
  23. [Im88]
    N. Immerman. Nondeterministic space is closed under complement. Proc. 3rd Struct. Complexity Theory Conf., 112–115, IEEE, 1988.Google Scholar
  24. [JVV86]
    M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43 (1986): 169–188.MathSciNetMATHCrossRefGoogle Scholar
  25. [Ka87]
    J. Kadin. PNP[logn] and sparse Turing complete sets for NP. Proc. 2nd Struc. in Complexity Theory Conf., 33–40, IEEE, 1987.Google Scholar
  26. [KL80]
    R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexity classes. Proc. 12th ACM Symp. Theory of Comput Sci., 302–309, 1980.Google Scholar
  27. [Ko88]
    K. Ko. Relativized polynomial time hierarchies having exactly k levels. Proc. 3rd Structure in Complexity Theory, 251, IEEE, 1988.Google Scholar
  28. [KST88a]
    J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Proc. Colloq. Trees in Algebra and Programming 1988, Lecture Notes in Computer Science 299, 40–51, Springer-Verlag, 1988.Google Scholar
  29. [KST88b]
    J. Köbler, U. Schöning, and J. Torán. Turing machines with few accepting paths, manuscript, 1988.Google Scholar
  30. [Kr86]
    M.W. Krentel. The complexity of optimization problems. 18th ACM Symp. Theory Comput., 69–76, 1986.Google Scholar
  31. [La83]
    C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Letters 14 (1983): 215–217.MathSciNetCrossRefGoogle Scholar
  32. [Lo82]
    T.J. Long. Strong nondeterministic polynomial-time reducibilities. Theor. Comput. Sci. 21 (1982): 1–25.MATHCrossRefGoogle Scholar
  33. [LS86]
    T.J. Long and A.L. Selman. Relativizing complexity classes with sparse sets. Journ. of the Assoc. Comput. Mach. 33 (1986): 618–628.MathSciNetCrossRefGoogle Scholar
  34. [LV90]
    M. Li and P. Vitányi. Applications of Kolmogorov Complexity in the Theory of Computation. In A. Selman, editor Complexity Theory Retrospective, pages 147–203, Springer-Verlag, 1990.Google Scholar
  35. [Ma82]
    S.A. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. Journ. Comput. Syst. Sci. 25 (1982): 130–143.MathSciNetMATHCrossRefGoogle Scholar
  36. [MH80]
    S.A. Mahaney and J. Hartmanis. An essay about research on sparse NP complete sets. Math. Found. Computer Science 1980, Lecture Notes in Computer Science 88, 40–57, Springer-Verlag, 1980.Google Scholar
  37. [Ma79]
    R. Mathon. A note on the graph isomorphism counting problem. Inform. Proc. Lett. 8 (1979): 131–132.MathSciNetMATHCrossRefGoogle Scholar
  38. [PZ83]
    C.H. Papadimitriou and S.K. Zachos. Two remarks on the power of counting. 6th GI Conf. on Theor. Comput. Sci., Lecture Notes in Computer Science 145, 269–276, Springer-Verlag, 1983.Google Scholar
  39. [Pi88]
    M. Piotrów. On the complexity of counting. Symp. Math. Found. Comput. Sci., Lecture Notes in Compuyter Science 324, 472–482, Springer-Verlag, 1988.Google Scholar
  40. [Sc83]
    U. Schöning. A low and a high hierarchy within NP. Journ. Comput. Syst. Sci. 27 (1983): 14–28.MATHCrossRefGoogle Scholar
  41. [Sc87]
    U. Schöning. Graph isomorphism is in the low hierarchy. 4th Symp. Theor. Aspects of Comput. Sci., Lecture Notes in Computer Science 247, 114–124, Springer-Verlag, 1987.Google Scholar
  42. [SW88]
    U. Schöning and K.W. Wagner. Collapsing oracle hierarchies, census functions, and logarithmically many queries. Symp. Theor. Aspects Computer Science 1988, Lecture Notes in Computer Science 294, 91–97, Springer-Verlag, 1988.Google Scholar
  43. [Si77]
    J. Simon. On the difference between one and many. Intern. Conf. Automata, Lang., Progr. 1977, Lecture Notes in Computer Science 52, 480–491, Springer-Verlag 1977.Google Scholar
  44. [SJ87]
    A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidely mixing Markov chains. Internal Report CSR-241-87, Department of Computer Science, University of Edinburgh, 1987.Google Scholar
  45. [Si83]
    M. Sipser. A complexity theoretic approach to randomness. Proc. 15th ACM Symp. Theory of Comput. Sci. 1983, 330–335.Google Scholar
  46. [St77]
    L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci. 3 (1977): 1–22.MathSciNetMATHCrossRefGoogle Scholar
  47. [St85]
    L.J. Stockmeyer. On approximation algorithms for #P. SIAM Journ. Comput. 14 (1985): 849–861.MathSciNetMATHCrossRefGoogle Scholar
  48. [Sz87]
    R. Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin EATCS 33 (1987): 96–99.MATHGoogle Scholar
  49. [Tod87]
    S. Toda. ∑2SPACE(n) is closed under complement. Journ. Comput. Syst. Sci. 35 (1987): 145–152.MathSciNetMATHCrossRefGoogle Scholar
  50. [Tod89]
    On the computational power of PP and ⨁P. 30th Symp. Found. Comput. Sci., 514–519, IEEE, 1989.Google Scholar
  51. [To88a]
    J. Torán. Structural Properties of the Counting Hierarchies. Doctoral dissertation, Facultat d’Informatica, UPC Barcelona, Jan. 1988.Google Scholar
  52. [To88b]
    J. Torán. An oracle characterization of the counting hierarchy. Proc. 3rd Struct. Complexity Theory Conf., 213–223, IEEE, 1988.Google Scholar
  53. [Va76]
    L.G. Valiant. The relative complexity of checking and evaluating. Inform. Proc. Lett. 5 (1976): 20–23.MathSciNetMATHCrossRefGoogle Scholar
  54. [Va79a]
    L.G. Valiant. The complexity of computing the permanent. Theor. Comput Sci. 8 (1979): 181–201.MathSciNetCrossRefGoogle Scholar
  55. [Va79b]
    L.G. Valiant. The complexity of reliability and enumerability problems. SIAM Journ. Computings 8 (1979): 410–421.MathSciNetMATHCrossRefGoogle Scholar
  56. [VV86]
    L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47 (1986): 85–93.MathSciNetMATHCrossRefGoogle Scholar
  57. [Wa86a]
    K.W. Wagner. Some observations on the connection between counting and recursion. Theor. Comput. Sci. 47 (1986): 131–147.MATHCrossRefGoogle Scholar
  58. [Wa86b]
    K.W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Inform. 23 (1986): 325–356.MathSciNetMATHCrossRefGoogle Scholar
  59. [Wr77]
    C. Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3 (1977): 23–33.MathSciNetMATHCrossRefGoogle Scholar
  60. [Ya85]
    A. Yao. Separating the polynomial-time hierarchy by oracles. 26th Proc. Found. Comput. Sci., 1–10, IEEE, 1985.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Uwe Schöning
    • 1
  1. 1.Abt. Theoretische InformatikUniversität UlmUlmGermany

Personalised recommendations