Skip to main content

Robust Testing of Functionals

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 34))

Abstract

Given a smooth d-parametric model, let T = T(ψ) be a functional that is Fisher consistent and differentiable at the model with influence curve ψ. In our paper, the multisided testing problem about T,

$${\text{H}}:{\text{ }}T'{\text{Cov}}{(\psi )^{ - 1}}T \leqslant {b^2}{\text{ vs}}{\text{. K}}:T'{\text{Cov}}{(\psi )^{ - 1}}T \geqslant {c^2}$$

which extends the classical multiparameter hypotheses to nonparametrized measures, is studied using a locally asymptotic robust approach. Assuming any full infinitesimal neighborhoods, and i.i.d. observations, we derive a locally asymptotic maximin (LAM) upper bound for the testing power at level α of the form

$$\Pr [{x^2}(d;{c^2}) > {c_\alpha }(d;{b^2})],$$

where χ2(d; c 2) denotes a χ2-variable with d degrees of freedom and noncentrality parameter c2, and cα(d;b 2) is the upper α-point of a χ2(d;b 2) distribution. Depending on suitable constructions, the LAM bound is attained by the test ϕ(ψ) = (ϕ 1,ϕ 2,…),

$${\phi _n} = {\text{J[}}n{S_n}'{\text{Cov}}{(\psi )^{ - 1}}{S_n} > {c_\alpha }(d;{b^2})],{\text{ }}n = 1,2,...,$$

where (S 1, S 2,…) = S(ψ) is an asymptotically linear estimator with influence curve ψ, and J denotes the indicator function. This optimality, however, degenerates to some kind of unbiasedness since all other “estimator tests” ϕ(ϱ) with ϱψ achieve asymptotic minimum power zero.

The selection of the functional T(ψ) to be tested leads to nontrivial optimality problems. In the one dimensional, onesided case,

$${\text{H: }}T \leqslant b{\text{ }}vs.{\text{ K}}:T \geqslant c,$$

one may want to test ε-contamination or total variation balls P vs. Q using functionals. Then maximization of the corresponding LAM bound

$$\Pr [N\left( {0,1} \right){u_\alpha } - \left( {c - b} \right)/\sqrt {Var\left( \psi \right)} ]$$

subject to the inclusions P ⊂ H, Q ⊂ K, yields an asymptotic version of the Huber-Strassen maximin test for P vs. Q based on least favorable pairs. In the multidimensional case, this idea leads to the minimization of the maximum eigenvalue of the information-standardized covariance subject to a bound on the self-standardized sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMS subject classifications:

62 G35, 62 E20

References

  1. Beran, R.J. (1981 a): Efficient robust estimates in parametric models. Z. Wahrscheinlichkeitstheorie Verw. Geb. 55 91–108.

    Google Scholar 

  2. Beran, R.J. (1981b): Efficient robust tests in parametric models. Z. Wahrscheinlichkeitstheorie Verw. Geb. 57 73–86.

    Google Scholar 

  3. Beran, R.J. (1984): Minimum Distance Procedures. In: Handbook of Statistics Vol. 4 (P.R. Krishnaiah, P.K. Sen, eds.) 741–754. Elsevier Science Publishers, New York.

    Google Scholar 

  4. Bickel, P.J. (1981): Quelques aspects de la statistique robuste. In: Ecole d’Ete de Probability de Saint-Flour IX-1979 (P.L. Hennequin ed.) 1–72. Lecture Notes in Mathematics #876. Springer Verlag, Berlin.

    Google Scholar 

  5. Bickel, P.J. (1984): Robust regression based on infinitesimal neighborhoods. Ann. Statist. 12 1349–1368.

    Google Scholar 

  6. Donoho, D.L., Liu, R.C. (1988): The “automatic” robustness of minimum distance functionals. Ann. Statist. 16 552–586.

    Google Scholar 

  7. Ferguson, Th.S. (1967): Mathematical Statistics—A Decision Theoretic Approach. Academic Press, New York.

    Google Scholar 

  8. HÁJek, J. (1970): A characterization of limiting distributions of regular estimates. Z. Wahr scheinlichkeitstheorie Verw. Geb. 14 323–330.

    Google Scholar 

  9. HÁJek, J. (1972): Local asymptotic minimax and admissibility in estimation. Proc. 6th Berkeley Symp. on Math. Stat, and Prob. 1 175–194.

    Google Scholar 

  10. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A. (1986): Robust Statistics—The Approach Based on Influence Functions. Wiley, New York.

    MATH  Google Scholar 

  11. Huber, P.J. (1965): A robust version of the probability ratio test. Ann. Math. Stat. 36 1753–1758.

    Google Scholar 

  12. Huber, P.J. (1968): Robust confidence limits. Z. Wahrscheinlichkeitstheorie Verw. Geb. 10 269–278.

    Google Scholar 

  13. Huber, P.J. (1981): Robust.Statistics. Wiley, New York.

    Google Scholar 

  14. Huber-Carol, C. (1970): Etude asymptotique de tests robustes. Ph. D. thesis, ETII Zurich.

    Google Scholar 

  15. Huber, P.J., Strassen, V. (1973): Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Statist. 1 251–263.

    Article  MathSciNet  MATH  Google Scholar 

  16. Koshevnik, Yu.A., Levit, B.Ya. (1976): On a non parametric analogue of the information matrix. Theor. Probab. Appl. 21 738–753.

    Article  MATH  Google Scholar 

  17. Lecam, L. (1960): Locally asymptotically normal families of distributions. Univ. of California Publ. in Statistics #3, 37–98.

    Google Scholar 

  18. Lecam, L. (1969): Theorie Asymptotique de la Decision Statistique. Les Presses de 1’Universite de Montreal.

    Google Scholar 

  19. Lecam, L. (1986): Asymptotic Methods in Statistical Decision Theory. Springer Verlag, New York.

    Google Scholar 

  20. Lehmann, E.L. (1959): Testing Statistical Hypotheses. Wiley, New York.

    Google Scholar 

  21. Maronna, R. A. (1976): Robust M-estimators of multivariate location and scatter. Ann. Statist. 4 51–67.

    Google Scholar 

  22. Millar, P.W. (1979): Robust tests of statistical hypotheses. Preprint.

    Google Scholar 

  23. Millar, P.W. (1981): Robust estimation via minimum distance methods. Z. Wahrscheinlichkeitstheorie Verw. Geb. 55 73–89.

    Article  MathSciNet  MATH  Google Scholar 

  24. Millar, P.W. (1983): The minimax principle in asymptotic statistical theory. In: Ecole d’Ete de Probabilites de Saint-Flour XI-1981 (P.L. Hennequin, ed.) 75–266. Lecture Notes in Mathematics #976. Springer Verlag, Berlin.

    Google Scholar 

  25. Millar, P.W. (1984): A general approach to the optimality of minimum distance estimators. Trans. Amer. Math. Soc. 286 377–418.

    Google Scholar 

  26. Reeds, J.A. (1976): On the definition of von Mises Functionals. Ph. D. thesis, Harvard University, Cambridge.

    Google Scholar 

  27. Rieder, H. (1977): Least favorable pairs for special capacities. Ann. Statist. 5 909–921.

    Google Scholar 

  28. Rieder, H. (1978): A robust asymptotic testing model. Ann. Statist. 6 1080–1094.

    Google Scholar 

  29. Rieder, H. (1980): Estimates derived from robust tests. Ann. Statist. 8 106–115.

    Google Scholar 

  30. Rieder, H. (1985): Robust Estimation of Functionals. Technical report, University of Bayreuth.

    Google Scholar 

  31. Rieder, H. (1987): Robust regression estimators and their least favorable contamination curves. Statistics amp Decisions 5 307–336.

    Google Scholar 

  32. Rieder, H. (1989): A finite-sample minimax regression estimator. Statistics 20 211–221.

    Google Scholar 

  33. Wang, P. C. C. (1981): Robust asymptotic tests of statistical hypotheses involving nuisance parameters. Ann. Statist. 9 1096–1106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Rieder, H. (1991). Robust Testing of Functionals. In: Directions in Robust Statistics and Diagnostics. The IMA Volumes in Mathematics and its Applications, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4444-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4444-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8772-8

  • Online ISBN: 978-1-4612-4444-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics